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Abstract—In power systems, a cyber-physical model can play
a significant role in contingency ranking to assist operators with
preventive plans for cyber-related contingencies by identifying
the most significant ones. Diverse cyber-physical models based
on attack trees and graphs, fault trees, Markov state-space,
etc. have been proposed, and are being developed by researches
depending on specific objective. However, prior to the deployment
of the models in real world, it is essential to evaluate the
performance based on their computational bottlenecks, scalability
and accuracy. This paper thus introduces a software-based model
comparison framework that allows researchers to improve their
models and also evaluate new models against existing ones.
Additionaly, we present the algorithms of two cyber-physical
modeling engines targeted for contingency and critical assets
ranking; based on Attack Graph Analysis (AGA) and Markov
Decision Process (MDP) and compare their performance. The
models are evaluated for three different use cases: IEEE-24,
CyPSA 8-substation, and IEEE-300 systems on cyber-physical
model parameters such as MDP size, computation time of
generation, the number of attack paths, etc. This framework
will not only allow us to design and validate models but also
provide a platform for researches worldwide to test new models.
Further an application is developed for visualization with one-line
diagram and ranking of contingencies and critical assets.

Index Terms—Contingency and Critical Asset ranking,
Markov Decision Process, Attack Graph Analysis, Depth First
Search, Breadth First Search

I. INTRODUCTION

According to the report by the Director of National In-
telligence, Daniel Coats, hackers from different parts of the
world have the ability to momentarily interrupt mission crit-
ical infrastructure of US such as power grid and natural
gas pipelines [1]. Historically, two major cyber attacks like
Ukranian attack in 2015 and Stuxnet attack in 2008 impacted
the economy of Ukraine and Iran drastically. Both attacks were
non-trivial from attacker’s side to perform and defender’s side
to prevent. The Stuxnet worm targeted the vulnerability of
a network printer spooler services and infiltrated the control
network, to modify the Step7 Siemens’ software to tamper
the logic of over-speeding the centrifuge of a Uranium en-
richment plant, without generating alerts. Similarly, as per
SANS report [2], the Ukranian attack was performed in multi
stages. In reconnaissance stage, the attacker fixed their target,
further weaponizing through the Microsoft Office document
by embedding BlackEnergy3 malware and delivering through

a phishing mail to an IT employee, who accidentally installed
the malware which enabled the adversary to create a Botnet
and escalate privileges and credentials to finally control the
circuit breakers through Human Machine Interface (HMI) as
well as disrupt communication network.

These scenarios motivate us to design models that consider
dependencies between cyber and physical systems to prevent
intrusion as well as ensure resiliency of power system under
compromised state. These models do not have a standard plat-
form to compare its efficacy, hence the objective of this paper
is to present a framework for designing new cyber physical
models as well as comparing with the existing ones. This will
help validate the cyber physical models before deployment at
the utility’s Energy Management System (EMS).

The paper proceeds as follows. Section II provides a litera-
ture review on different models developed for threat modeling
such as attack trees, Bayesian graphs, etc. along with the cyber
physical models for critical asset and contingency ranking,
developed by our team. Further in Section III, we elaborate the
AGA [3] and MDP [4] based approach adopted. The power
system use cases: IEEE-24, 8-substation [5] and IEEE-300
system considered for the model comparison are introduced
in Section IV. In Section V and VI, we perform analysis on
the MDP and AGA model using the use cases.

II. BACKGROUND

A Cyber Physical System (CPS) model considers models of
physical processes along with the software and network mod-
els. The model complexity depends on the objective as well
as the time and space complexity involved in model creation
and its analysis. The complexity of model building further
increases when security comes into the picture. Researches
have developed many ground-breaking models confined to
threat and physical modeling separately. For example, attack
trees models are used for analysing threats on systems and
possible attack paths to reach those threats. Different types
of attack trees are developed by researcher that focuses on
a specific objective. Vulnerability trees are proposed in [6],
which represents, how different vulnerabilities are hierarchi-
cally interdependent in a system. In the paper [7], the author
studies how threat trees behave and how the tree computations
are done when several interdependent attack parameters are
considered. An enhanced attack tree was proposed by [8] that978-1-7281-3192-4/19/$31.00 ©2019 IEEE
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models complex attacks with time dependencies. It has devised
a new gate, ”Ordered-AND” which considers the attackers
subsequential behavior and limitations on the attack paths.
The author in [9] proposed attack graph with an example
to illustrate how they specify and analyze network attack
models. They utilized these models to automatically generate
attack graphs by exploring the exploitation of system wide
vulnerabilities. Khand [10] utilized different dynamic fault tree
gates to attack trees making them more dynamic. Attack trees
are utilized in diverse areas of power systems. For example,
in the distribution side, the threat analysis of an Advanced
Metering Infrastructure (AMI) network is designed in [11]
to create an enhanced attack tree that captures the attackers
primary objective for example, energy theft and the individual
attack steps such as jamming or eavesdropping that are carried
out prior to the final stages of attack. In the paper [12]an attack
tree formulation based on power system SCADA network is
used to evaluate the system, use cases, and vulnerabilities at
leaf nodes. The security states are considered for computing
the measure of vulnerabilities in the power system. All these
techniques have focused on building models considering only
pure cyber or physical side.

Modeling trees considering the security of CPS, makes it
more challenging to construct attack trees. The paper [13]
discusses the challenges in modeling CPS with regards to
intrinsic heterogeneity, concurrency and sensitivity to timing.
A cyber-physical model for hierarchical control system is pro-
posed in [14] to evaluate the degree to which an inappropriate
control command from cyber intrusion can influence power
systems. Our previous work on creating cyber physical models
for power system contingency and critical asset ranking fol-
lowed two different approach for addressing the problem. The
first work on Security-Oriented Cyber-Physical Contingency
Analysis (SOCCA) [4] identifies and ranks the contingencies
possible through cyber-side vulnerability exploitation. Basi-
cally a Markov Decision Process (MDP) based approach is
used to model cyber-physical attack as a finite set of security
state [4], that explores all the security states the system can
be in. Our second work Cyber Physical Security Assessment
(CyPSA) [3] utilizes Attack Graph Analysis (AGA) technique
to create possible attack paths from a cyber to physical node
in the graph and rank those paths considering the cyber costs
as well as impact of the attack on physical sides. Further, an
extension to the SOCCA model, a CPMA framework [15] is
proposed that builds a partially observable Markov Decision
Processes (POMDP) model instead of simple MDP to compute
all the possible attack paths. Both these work addresses the
issue of finding the critical assets on both cyber and physical
side to prioritize the protection schemes.

Many researchers in the area of cyber-physical modeling
have cited some of our models. In [16], an information-
energy flow model based on matrix-based computation is
developed considering the mutual interdependencies of cyber
and physical components. Due to challenges associated with
selecting security metrics for electric grid, authors in [17]
explores diverse security metrics for leveraging attack graphs.

A hierarchical control system cyber network is modeled as a
directed graph with data nodes and directed branches described
using node-branch incidence matrix [18]. ARCADES [19] pro-
poses a technique to explore defense strategies based on con-
tingency ranking in power systems. A multi-resolution model
of complex distribution network with five operating states
created using time-state machine method [20] is developed and
validated using cyber-physical co-simulation. Authors in [21]
discusses the effects of cyber coupling on the cascading failure
in power system. A stochastic method is used to generate the
cascade failures caused by cyber malwares. Most of these
works propose a novel model, but there is yet no work on
providing platform to compare different models and use cases
to deploy them in real world. This framework would provide
the researchers, who leveraged our prior work, a platform
to design new models and also validate them. In this paper,
we summarize both MDP and AGA based approach and use
the framework to analyze the performance with regards to
scalability and accuracy for varying use-cases. Few algorithms
of our SOCCA [4] and CyPSA [3] engine were not presented
in detail in the original work, hence here we present them to
assist other researchers to explore our models.

III. ANALYSIS OF CYBER PHYSICAL MODELS

A. Model Creation and Evaluation Framework

Our previous works SOCCA and CyPSA were built with
each component run separately using different programming
language and runtime environment. In this work we developed
a framework to run all the modules of the engines using a
common platform reducing the bottleneck of inter-application
communication and also organising the codes through C#
.NET libraries. Hence, we refer the engines as SOCCA#
and CyPSA#. The framework for our cyber physical model
generation and evaluation is shown in Fig. 1. Each substation
control center has a dedicated firewall to monitor and control
incoming and outgoing traffic. We develop a firewall rule
generator to automatically generate firewall configuration for
the control centers, based on the power system use case.
The Network Mapper (NMap) report spawned from the hosts
in the control network provides the details on the services
running on the hosts. The NPView [22] application then
parses the NMap report and firewall rules to generate the
host connectivity matrix or the cyber topology, used by the
CyPSA# and SOCCA# engine along with the power topology
from Power World, for critical asset and contingency ranking.
In this section, we will discuss in details on the algorithm
used for MDP state creation in SOCCA# and the procedure
followed in the CyPSA# along with the AGA algorithm.

B. MDP based SOCCA# engine analysis

SOCCA engine provides an elaborate and insightful state-
space exploration of the network by modeling the system states
based on the number of compromised hosts of the system
and assigning each state a security index reward based on
their connectivity with respect to the power components of the
cyber-physical network. The state space of the MDP is based
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Fig. 1. Framework for the cyber physical model creation and evaluation

on the different combination of hosts that can be compromised
based on inter-host reachability. The action spaces are the
adversarial vulnerability exploitations. The reward function
is based on the susceptibility measure to attacks depended
on that state. The transition probability representing the at-
tacker success rate, are computed based on the Common
Vulnerability Scoring System (CVSS) scores obtained from the
National Vulnerability Database (NVD). For example, a lower
CVSS value would have a higher transition probability and
zero day attack with no vulnerability will have low transition
probability. Each security state is assigned Performance Index
(PI) and Security Index (SI) as,

P I =
X

l L∈

max
f s(l)

f MAX (l)
− 1, 0

2

(1)

SI(s) = max
a A∈ (s)

(

γ ·
X

s0∈S

P (s0|s, a) [∆P I (s, s0) + SI (s0)]

)

(2)
where f s(l) is the flow in the line l and f MAX (l) is the upper
limit on the power flow in the line l in Eq. 1, P (s0|s, a) is
the transition probability, γ is the discount factor in Eq. 2.

1) Curse of Scalability: The engine generates the MDP for
a network of hosts considering the interconnections among
the cyber and physical components in the system. It uses the
connectivity matrix to extract the list of the hosts and their
neighbors and builds the MDP. With increasing hosts, the MDP
creation Algorithm 1 results in state explosion, as it has a time
complexity of O( 2N ), where N is the number of hosts in the
network.

To address the state space explosion problem, the tool
considers each subnetwork of hosts as a single node for MDP
creation, reducing the state space significantly. For a given set
of host-to-host connections, each new network associated with
a particular host is considered single host in the network. Any
connection from one host in one network to another host in a
different network is considered a connection between two sub-
network hosts. For each subnetwork, the tool iterates through
all of the hosts contained in the network, compromising any
power components associated with a particular host. The
resulting PI from opening all of the subnetworks associated
transmission lines through relays, is used to calculate its SI.
Although clustering the hosts based on subnetwork made the
SOCCA model more scalable, but there is a trade off in the
accuracy of the attack paths, because every host has a unique

Algorithm 1 MDP Creation using Dynamic Prog.(SOCCA#)
1: function Create MDP (mdps, curr mdp , host) .

mdps : list of all mdp states, curr mdp : index of current
MDP processed, host: host in the current iteration

2: for h in host.neigh do
3: f ound = if h in mdps[curr mdp] ’s privs
4: if !f ound then
5: Add h to mdps[curr mdp].privs
6: mdp edge set = false
7: for mdp in mdps do
8: equal = if mdp == mdps[curr mdp]
9: break

10: if equal then
11: edge f ound = check if edge exist
12: if edge f ound then
13: mdps[curr mdp].neigh add mdp
14: end if
15: Create MDP (mdps, index(h), h)
16: Create MDP (mdps, index(h), host)
17: mdp edge set = true
18: break
19: end if
20: end for
21: if !mdp edge set then
22: Create a MDP state new m
23: Add new m to mdps
24: new m.privs = mdps[curr mdp].privs
25: Add an edge for n mdp added
26: Create MDP (mdps, count(mdps), h)
27: Create MDP (mdps, count(mdps), host)
28: end if
29: end if
30: end for
31: end function

set of vulnerabilities, which is well represented in the AGA
model.

2) Description of the MDP Generation Algorithm 1: The
function Create MDP is called initially with MDP’s initial
state (∅), representing no host the attacker has privilege
over. The connectivity matrix representing a directed graph
is traversed recursively starting from the initial entry point of
the host, to keep track of the current state of the MDP. Every
MDP state comprise of a list privs that represent the list of
host the attacker has privilege over. It first checks, if the host
h exist in the current MDP’s privs list (line 4). If !f ound it
adds the host h to the list and further searches all the MDP
states. When the search meets a graph edge [i,j] that crosses
over privilege domains hi to hj , an edge or state transition is
created (line 13). A new MDP state new m is created with
privs allocated and added to mdps list (line 22-25). Once
the MDP is created, ranking of cyber-physical contingencies
is performed as per the Algorithm 1 presented in [4].

C. AGA based CyPSA# engine analysis

The CyPSA# based on Attack Graph Analysis of a cyber-
physical networks connectivity is implemented as a means of
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Algorithm 2 Pseudo Code of CyPSA#
1: Parse Connectivity Matrix obtained from NP V iew
2: Parse Topology File having nmap information.
3: Select list of IP of targeted relays ( sel t).
4: Build host connectivity graph G with each nodes repre-

senting the combination of type of services that allows a
vulnerability to be exploited on a given host.

5: attackGraph = Generate Attack Graph(G, L, sel t)
6: Compute P I by opening a breaker from the relay  ∈ sel t .
7: Compute CC based on the attack paths in attackGraph

CC(P ) =
P

p P∈ CC(p) , p are edges in path P
8: Rank critical assets based on SI computed using Eq 3.

providing a scalable solution for analyzing which attack path
contingencies on the system are most critical with respect to
safety and security of the network. This engine utilizes the host
connectivity paths and vulnerability information to generate
an attack graph. The paper [3] demonstrate the application
developed for critical assets and contingency ranking. Here we
provide the details of the model CyPSA engine through the
pseudo code (Algorithm 2) and the AGA (Algorithm 3). The
attack graph combines individual host paths chaining system
vulnerabilities to produce a list of possible attack paths and
rank each of them based on the security index 2. The Security
Index(SI) is computed as

SI =
P erf ormanceIndex(P I)

CyberCost(CC)
(3)

where PI is computed using Eq. 1 and CC using line 7 of
Algorithm 2. Since PI represent the degree of impact on
the physical side, SI is directly proportional to it. But lower
CC represent the ease with which the attacker can exploit a
vulnerability, so SI is inversely proportional to the CC. The
attack path based analysis allows to explore vulnerabilities
in different segments of the path in details. For instance, an
attacker compromising a web server in the Demilitiarized Zone
(DMZ) could get access to a PI server (first segment in the
attack path) and then exploit a vulnerability in that PI server to
gain local control and connect to a SCADA controller (second
segment in the attack path).

D. Firewall rules to connectivity matrix generation

The firewall rules from the substation’s control network and
main control centre network were collected to form the host
connectivity matrix for both CyPSA# and SOCCA# engine.
It makes use of Network Perception’s NP-View application to
build a logical network model by parsing firewall rules of the
control network of each substation. Each firewall in a substa-
tion is interfaced to two network one that is the Inside control
network and the Outside network. Cisco’s Object groups were
used to classify users, devices and protocols into groups and
apply Access Control Lists (ACLs) to create policies for
groups rather than individual hosts. The NP View application
parses all these grouped ACLs to build the connectivity matrix
among the host with their allowed protocols and services. A
sample example can be found in the Appendix IX-A.

Algorithm 3 AGA module of CyPSA#
1: function Generate Attack Graph (G, L, sel t) . G :

host connectivity graph , L : attackers list, sel t : targeted
critical assets

2: create empty attackGraph
3: for attacker a in L do
4: d,p = djikstra shortest path(a,G) . Get the list of

distance d and predecessor path p, based on shortest path
from a to reachable nodes from a in the graph G

5: for target t in d do
6: if t in L then
7: path = G( t) . get the path from G
8: v list = Get vuln list for the path
9: cost = getTotalCost(path, v list )

10: Add path to attackGraph
11: end if
12: end for
13: end for
14: return attackGraph
15: end function

Fig. 2. Impact of sparsity of connectivity matrix on model

IV. POWER SYSTEM USE CASES

The sparsity of the connectivity matrix impacts the compu-
tation time of model generation as well as its size. The number
of MDP states depends on the inter-connectivity among the
hosts, hence a sparse matrix would result in less MDP states.
Number of nodes generated using the AGA approach is
dependent on the dimension of the connectivity matrix. Hence,
for our analysis, we have considered three power system cases
with varying sparsity of host connectivity matrix in the control
network. Fig. 2 shows how a densely connected network
results in higher MDP states.

A. 8-substation Dense Connectivity Model

The 8-substation network uses the node-breaker topology
to represent the detailed physical information. Each substation
having multiple buses and control devices increases hosts per
control room, making the model dense. There are 52 buses
and internal substation nodes, relays, breakers, firewalls, and
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routers are modeled along with the IPs of the relays and
firewall rules of the control network [5]. Relays and breakers
in the substations are crucial for cyber-physical modeling. The
cyber topology for this case as obtained from NPView.

B. IEEE 24 Sparse Network Model

The IEEE 24-bus reliability test system was developed by
the IEEE reliability subcommittee and was published is 1979
[23]. It is a bus-branch topology where 24 bus represent 24
substations. The network topology is sparse in comparison to
the 8-substation case since the topology doesn’t include the
detailed configuration within each substation. On the cyber
side, each substation is configured to have its firewall rules to
allow specific traffic to go to the main control center.

C. IEEE 300 Large Network model

The IEEE 300 bus test case was developed by Mike Adibi
in 1993 [24]. With 300 buses in the network, it represents
a large area of power grids with more detailed information.
Meanwhile, after expanding the topology into node-breaker
topology, the detailed information within the substation can
be considered, making the case both large and dense. On the
cyber side, utility WAN are connected to these 300 substations
using three different communication technologies, they are
fiber, cellular, and microwave. A combination of serial and
ethernet based firewalls are deployed for the substations.

V. RESULT AND ANALYSIS

A. SOCCA# Engine Analysis

1) Analysis on attack starting point: The number of MDP
states generated using Algorithm 1 depended on the attacker’s
host starting point. Three hosts from three different networks
are selected for the analysis for both IEEE 24 and 8-substation
case. One host from each network were randomly picked for
analyzing the MDP size and computation time. Fig. 3 shows
how the attacker’s starting point alters the MDP generation
computation time and its size. In the IEEE 24 system, when
the attacker selects H1, the number of MDP states are 147,
with 469 edges and takes 0.068 sec to find the attack paths,
which differs from host H2 and H3. The complexity of the
attack depends on the size of the MDP, hence this analysis
would allow the operators to prioritize the cyber assets based
on the complexity. The starting host that generates the least
sized MDP needs the highest attention. The dense 8-substation
model resulted in more MDP states and edges and a high
computational time as shown in Fig. 3 making the model
infeasible for the densely connected network.

2) Sensitivity Analysis of Transition Probability on Con-
tingency Ranking: In the SOCCA model, contingencies are
defined by the edges between MDP states. The transition
probability of these states impacts contingency ranking. These
probabilities are the measure of the attacker’s capability of
compromising one host from another and are based on two
types: static and dynamic uncertainty [25]. In static uncer-
tainty the difficulty measure is directly computed from the
CVSS score of vulnerabilities exploited. Dynamic uncertainty
depends on many factors either on attacker hacking skills

Fig. 3. Comparison of MDP size and computation time for varying starting
host for attacker for IEEE 24 and 8-substation case.

TABLE I
MODEL SENSITIVITY TO TRANSITION PROBABILITY , I.E. NUMBER OF

CONTINGENCY WITHIN FIRST N RANKS FOR CHANGING TRANSITION
PROBABILITY

N = 0.15 = 0.25 = 0.35
1 1 2 2
2 1 2 2
3 1 1 1
4 1 2 2

or on the security alerts from Intrusion Detection Systems.
Hence we focused on the sensitivity of the model by varying
the transition probability P (s0|s, a) by . In these analyses,
the values for each states P (s0|s, a) is modified by δ, where
δ ∈ - , . As P (s0|s, a) impacts the MDPs SI (Eq. 2), we
evaluated its effect on the ranking of the contingencies. For
a fixed iteration with varying , we calculated the number of
contingencies that are ranked less than a rank say N = 4 .
From Table I we can observe, the number of contingencies
within rank N = 4 is 1 when = 0.15 and 2 when = 0.25.
With further rise in there was no impact observed.

B. CyPSA# Engine Analysis

1) Analysis on number of attack paths: We analyse the
number of attack paths computed from the algorithm based on
varying the number of relays an attacker targets. For example,
in 8-substation case, for 21 relays targeted, 87 one hop and
32 two hop paths are obtained(Fig. 4). The 8-substation case
being dense, attack paths with multiple hops are observed
unlike the IEEE 24 case with attack paths with only one
hop (Fig. 4). Even though the IEEE 300 case is a large and
dense system, it shows less attack paths in comparison to 8-
substation case, denoting less vulnerable hosts in the system.

2) Effect of NMap reports on attack paths: The impact of
NMap reports on attack paths computation are analysed for
the number of attack paths computed for the 8-substation and
IEEE 24 case. We altered the NMap reports of the substations
to study how number of open ports and services can escalate
access paths to a target device. For the 8-substation case,
we observed that as the number of substations that had
vulnerabilities from open ports and services increased from
2 to 4, the attack paths increased from 314 to 594 (Fig. 5).
Hence, the operator must secure as many hosts as possible to
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Fig. 4. Attack path count with number of hop distribution with varying target
counts for 8-substation, IEEE 24 and 300 case.

Fig. 5. Effect of number of substations with vulnerabilities on the attack
paths for 8-substation (left) and IEEE 24 (right) case .

reduce the number of attack paths. Similar trend followed for
IEEE 24 case, but based on the sparseness of its connectivity
matrix, there are no attack paths with more than one hop.

3) Analysis of graph traversal algorithms: Graph traver-
sal algorithms for computing shortest path such as Bell-
man Ford [26], [27], and Djikstra [28], Directed Acyclic
Graph(DAG), etc. are compared to determine the best one
for AGA approach based on the computation time. The com-
putation required for attack graph analysis depends on the
number of starting nodes accessible by the attackers. From
Fig. 6 we can observe that as the number of hosts considered
for attackers starting point increases, the computation time for
graph analysis increases faster in Bellman Ford in comparison
to Dijkstra based shortest path computation, for both 8-
substation and IEEE 24 case, hence we considered Dijkstra for
our CyPSA# engine (line 4 of the Algorithm 3). The attacker
may prefer a complex path rather than a shortest path hence
it is essential to explore all the possible paths rather than only
shortest paths. So we explored Depth First Search(DFS) and
Breadth First Search(BFS) based approach for finding attack
paths. The time complexity involved in both the techniques
depends on the connectivity matrix. Fig. 7 shows that DFS
approach resulted in higher computation time in comparison
to BFS for the denser 8-substation network. There was no
significant difference observed in computation time for sparse
IEEE 24 network using both approach.

VI. COMPARISON OF THE MDP AND AGA APPROACH

MDP based approach for contingency ranking results in
higher computation time for the densely connected network

Fig. 6. Comparison of Dijkstra and Bellman Ford on computation time for
8-substation (left) and IEEE 24 case (right)

Fig. 7. Computation times using DFS and BFS approach for 8-substation(left)
and IEEE 24(right) case

(Fig. 3). AGA based CyPSA# performed the attack graph
analysis for IEEE 300 case in 9 mins, but the MDP based
approach took more than 10 hours for generating the MDP
states and edges. Critical assets ranking is based on the Eq. 3.
Hence, we can observe from Fig. 9, due to relatively higher CC
(which depends on the type of vulnerability as well as the ac-
cess path), 10.12.1.101more critical than 10.14.1.101though
physical impact is more in case of the later. Ranking in MDP
approach is dependent on the SI, which depends on transition
probability as well as difference of PI between the transitioned
states. Contingency ranking in MDP approach refers to the
transitions of the MDP states, while in AGA approach, it is
referred to the critical path ranking. In both approach, the
computation time for model depended on attacker’s starting
point of intrusion.

VII. APPLICATION DESIGN FOR TESTING SOCCA# AND

CYPSA# PERFORMANCE

A desktop application was developed to test the contingency
rankings as well as visualize the one line diagram that would
allow a platform for the cyber players (attackers and defenders)
to securely operate the power system under cyber attacks.
Fig. 10 shows how an operator can fetch the power system
case, select the relays to compromise and compute the critical
asset ranking, attack paths, security index, performance index
with the list of vulnerabilities that can be exploited. Fig. 11
shows the visualization of the one line diagram for operating
the critical components of the 8-substation case.
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Fig. 8. An application for enumerating attack paths

Fig. 9. A desktop application developed for visualizing critical assets and
access path ranking

VIII. CONCLUSION

The framework is successfully utilized to test our cyber
physical models for different power system cases, with varying
level of cyber network density. The framework was also
tested by developing a desktop application for visualization.
It will help evaluate the pros and cons of different models
to improve existing models and develop new ones for more
diverse problems such as cyber-physical state estimation,
optimal response, etc. The analysis performed on our two
engines will provide situational awareness to the control room
operators. Additionally, assist network administrators to fix
firewall configuration as well as patch host vulnerabilities.
Current work rely on the firewall rules, Nmap reports for
cyber modeling. In future we will also explore alerts from
other cyber sources such as Snort, Splunk, BRO, Suricata,
etc. Further, we will use even larger cases such as Texas 2000
synthetic case [29] in our framework.
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IX. APPENDIX

A. Firewall Rule to Host Connectivity

The details on object group and network-object can be found
in Cisco’s firewall setting documentation [30].

1) Formation of network based object groups for 451 and
421 SEL relays in CAPITAL CITY substation.

object-group network CAPITALCITY
network-object host 10.37.1.250
object-group network CAP CITY 451
network-object host 10.37.1.101
network-object host 10.37.1.102
object-group network CAP CITY 421
network-object host 10.37.1.201
object-group network FTP SERVER
network-object host 72.36.82.194

2) Nesting object groups hierarchically so that one object
group can contain other object groups of the same type
object-group network DIST
group-object CAPITALCITY
group-object CAP CITY 451
group-object CAP CITY 421

3) This example creates a service object group for Inter-
control Center Communications Protocol (ICCP) ser-
vices. It was developed to enable data exchange over be-
tween utility control centers, Independent System Oper-
ators (ISOs), Regional Transmission Operators (RTOs),
and other Generators.
object-group service ICCP DATA tcp
port-object eq 102
port-object eq 8080

4) Similarly another outside network object-group is
formed.
object-group network PEER UTILS
network-object host 192.17.102.102
network-object host 192.17.102.103
network-object host 192.17.102.104

5) Finally ACL is constructed for the inbound traffic as
access-list FromOUTSIDE extended permit tcp
object-group PEER UTILS object-group DIST
object-group ICCP DATA
Similarly one more ACL that allows outbound traffic
of FTP protocol from DIST network to FTP server
network.
access-list FromINSIDE extended permit tcp
object-group DIST object-group FTP SERVER
object-group FTP DATA

The connectivity matrix for the above ACL is
1892, 72.36.82.184
1888, 10.37.1.101
1888, 1892, tcp:0-65535:21-21!tcp:0-65535:20-20
The host with ID 1888 and IP 10.37.1.101can send FTP data
port (20) and control port (21) to the FTP server with ID 1892
and IP 72.36.82.184.
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