
An AI-based Approach for Scalable Cyber-physical
Optimal Response in Power Systems

Shining Sun, Student Member, IEEE, Shamina Hossain-McKenzie, Member, IEEE,
Leen Al Homoud, Student Member, IEEE, Khandaker Akramul Haque, Student Member, IEEE,

Ana Goulart, Katherine Davis, Senior Member, IEEE

Abstract—Numerous research studies are being conducted to
enhance the resilience of the power grid by detecting potential
cyber or physical disturbances on the system. However, the
development of effective mitigation techniques and remediation
actions for cyber-physical systems (CPS) facing disturbance
scenarios is in an early stage. Therefore, this paper focuses
on building a framework of scalable cyber-physical optimal
response. A review of artificial intelligence methods relevant to
the design of the response framework is conducted. Then, an
artificial intelligence method based on controller sensitivities is
presented and initial results are discussed for a 9-bus system to
motivate its use in improving AI-based intrusion response.

Index Terms—artificial intelligence, cyber-physical system, op-
timal response engine, power system resilience, mitigation and
remediation actions

I. INTRODUCTION

The resilience of power system networks and infrastructures
are crucial to a nation’s economy and public safety. However,
despite advancements in technology, power grids remain vul-
nerable to an increasing number of disturbances, whether cyber
or physical. Awareness of the importance of cybersecurity
in achieving and maintaining power grid systems’ reliability
and resilience is increasing. This has resulted in widespread
enhancements to the defense of power systems against cyber-
originated threats over the past decade, particularly in the
research and development of cyber-aware grid planning and
monitoring [1].

The challenge is that digitization in power systems contin-
ues to grow, while new advanced attack techniques continue
to appear, leading to increases in novel cyber disturbances.
Disturbances can propagate between systems, highlighting the
need for observation of the system as a whole [2], [3]. For
example, a Denial of Service (DoS) attack to the Automatic
Generation Control (AGC) could cause improper resource
allocation or load imbalance [3].

Recent research has emphasized false data detection and
cyber mitigation. While identifying attacks is crucial, it is
equally important to respond to disturbances, take remedial
actions to prevent further damage, and restore normalcy. As a
result, optimal responses and remediation strategies in cyber-
physical systems have gained significant attention in the field
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of power system resilience and security. In 2023, cyber-
informed transmission planning has become North American
Electric Reliability Corporation (NERC)’s top work priority
[1].

Artificial intelligence (AI) methods are playing increasingly
important roles. However, mitigation and restoration are com-
plicated decision-making processes for balancing authorities,
individual regulated utility companies, and Independent Sys-
tem Operators (ISO) [4]. The question remains: how can AI
enable system operators to improve situational awareness and
response capabilities during an incident?

In this paper, we propose a framework for a Scalable Cyber-
physical Optimal Response Engine (SCORE), an automatic
optimal response engine to ensure resilience of the grid when
facing cyber and physical disturbances. The requirements of
SCORE are as follows:

• Provide real-time operational guidance for the large-scale
power system under different network topologies and
multiple disturbance scenarios.

• Provide a physics-informed AI-based approach to facili-
tate a fast and efficient decision-making process.

Section II presents related work. Recent techniques in deep
learning relevant to the design of SCORE are surveyed in
Section III. Section IV elaborates the framework of SCORE.
Section V provides preliminary results, and Section VI con-
cludes the paper.

II. RELATED WORK

A. Theoretical Approaches

To investigate how to solve the problem of optimal cyber-
physical intrusion response in power systems, some initial
previous studies [5] were conducted using Markov models,
but these studies lacked the use of AI and did not consider
the entire end-to-end control loop in the cyber-physical system,
which are major innovations addressed in this work. The initial
studies in [5] were also small and noted but did not attempt to
address the scalability issues. Related work includes propos-
ing a machine learning-based attack classification framework,
developing an adaptive special protective scheme (SPS) to
mitigate the cyber-physical disturbances, and a case study on
Markov Decision Process (MDP) approach [6].



B. Testbed Emulation Approaches

The Resilient Energy Systems Lab (RESLab) testbed repli-
cates the power system cyber-physical environment in research
studies. RESLab is mainly composed of a power system
simulator, a network emulator, a DNP3 master, a SNORT
intrusion detection system, and a data fusion engine [7].
PowerWorld Dynamic Studio (PWDS) serves as a real-time
power system simulator that also sends DNP3 outstation pack-
ets [8]. For emulating the power system communication and
control network, Common Open Research Emulator (CORE)
is employed that can connect to other virtual machines (VM)
as well as external hardware, to replicate a cyber-physical
power system [7]. SNORT serves as an intrusion detection
system that sends alerts to the DNP3 master [7]. The data
fusion engine is [7] and collects data from Wireshark, using
Elasticsearch, as well as SNORT logs. The fusion engine
aids in visualization and enables machine learning and AI
techniques to efficiently detect cyber-physical attacks [7].

C. Cyber-Physical Energy Management System

The Cyber-Physical Resilient Energy Systems (CYPRES)
EMS is presented in [9]. The solution is an end-to-end system
that manages the models, visualization, system monitoring and
control, physical and cyber alerts, and mitigation. In RESLab,
it interacts with CORE and PWDS [9]. The CYPRES EMS is
tested on a 2000-bus synthetic cyber-physical power system, in
the RESLab architecture described above. This application has
an interactive map to visualize and interact with the system in
real-time. The EMS allows for monitoring traffic in real-time,
critical for cyber-physical threat mitigation and response. A
Bayesian inference framework is set up in the EMS to help
detect cyber-physical threats and for risk assessment. The EMS
employs a tool named CyPSA-Live, which performs an online
risk analysis to improve the system’s situational awareness.

D. Improved Threat Identification

Cyber attacks pose threats to power systems [10]. A multi-
step or multi-stage intrusion involves the intruder’s privilege
escalation within a network. Details of the taxonomy of attacks
can mapped using the MITRE ATT&CK Framework [11], a
knowledge base that contains details on different intrusion
techniques and attack vectors, with suggested detection and
mitigation tools for each. These techniques are available for
Industrial Control Systems (ICS), with application to the
power grid. Privilege escalation is one of the steps. This type of
attack is studied in [12], where the authors develop a numerical
cyber-physical security index CPIndex that aids in assessment
of cyber-physical vulnerabilities in power systems. Some steps
may also include Denial-of-Service (DoS), Man-in-the-Middle
(MiTM), and False Data Injection (FDI) [10]. In DoS, the
intruder would flood traffic into its target with the goal of
shutting down a critical service or process. In MiTM, an
intruder compromises the communication between two assets
in a system. Lastly, in FDI, an intruder falsifies measurements
to mislead an operator or an algorithm.

III. DEEP LEARNING TECHNIQUES AND INTEGRATION
INTO SCORE’S DESIGN

In this section, we will investigate state-of-the-art technolo-
gies and emerging trends that have the potential to lead to
innovative solutions and breakthroughs in response engines.

A. Reinforcement Learning Techniques

With improvements in both computing algorithms and
hardware, machine learning techniques such as reinforcement
learning and deep learning methods are poised for break-
throughs in policy optimization and cybersecurity [13]. Due to
the performance of reinforcement learning (RL) in the control
and optimization process [14], it is an optimistic approach
for enhancing power system resilience [15]. The RL approach
is a category of machine learning algorithms in which an
agent learns to make optimal decisions in an environment by
interacting with it and receiving feedback in the form of re-
wards [14]. The agent learns from its experiences and uses this
knowledge to make decisions in subsequent interactions [14].
RL algorithms typically involve estimating the action-value or
the state-value function, aiming to maximize the rewards that
guides the agent’s actions.

An MDP is a discrete decision making process in a stochas-
tic environment [16]. Within RL, a variety of algorithms exist,
such as State-Action-Reward-State-Action (SARSA), Deep
Reinforcement Learning (DRL), Q-learning, etc [17]. DRL
combines reinforcement learning with deep neural networks,
which serve as function approximators in DRL. By taking
advantage of neural networks, DRL can handle complex and
high-dimensional state and action spaces [18]. Proximal Policy
Optimization(PPO), Advantage Actor-Critic (A2C) and Q-
learning are prominent algorithms within the DRL family.
PPO aims to optimize policies in RL with improved training
stability and sample efficiency, while A2C algorithm balances
the dual roles of actor and critic to enhance learning efficiency
and policy performance. Moreover, Q-learning algorithms are
able to approximate the value function by iteratively updating
Bellan equation [17]. The characteristic of Q-learning is a
perfect solution for off-policy decision optimization problems
[17]. Another RL approach takes advantage of estimating and
updating Q-values [17]. The SARSA algorithm acquires the
optimal policy by converging to maximum reward values [17].
In Table I, we compare papers applying RL techniques to
support the power system optimal solution process during
disturbances.

In Table I, the DRL approach is used to learn optimal
parameters, vulnerability, and recovery stategy in [19]- [25].
[19] - [22] utilized PPO and A2C algorithms to analyze
optimal power flow solution, volt-var control and adversarial
training during cyber events. Q-learning further adds benefits
to the optimal recovery solution and mitigation strategies [23]-
[25]. [26] proposed the cascading failure mitigation approach
applying SARSA. Each of these applications in the four
approach is new and has value to offer in response engine
design.



TABLE I
RL ALGORITHMS PRESENTED IN PAPERS

Learning
Algorithm

Use Cases References
No.

DRL

PPO

Defense policy-making by learning an
adversary to improve security

[19]

Generating AC optimal power flow
solutions in DER

[20]

Obtaining effective and timely power
dispatch policies

[21]

PPO\
A2C

Volt-var control in distribution system [22]

Q-
learning

Optimal operation and maintenance
management

[23]

Mitigation strategy caused by cyber
attack

[24]

Generation restoration process [25]

SARSA Cascading failure mitigation strategy [26]

B. Meeting Data Fusion and Data Trust Needs for RL

In developing RL or any AI-based defense, a robust design
of its data flows and security is essential. Data fusion plays
a significant role in enhancing cybersecurity by combining
information from different sources, such as physical sensors,
control systems, and network logs. It enables (1) a comprehen-
sive view of the system’s security posture with more accurate
understanding of the system’s behaviors, for more effective
threat detection and response, (2) anomaly detection and early
indicators to minimize impact on the system, (3) correlation of
cyber and physical events with system behavior for improved
threat intelligence. By leveraging fused data and advanced
analytic techniques, organizations can more effectively protect
their systems.

C. Including Physics in the AI with Controller Sensitivities

The response engine will use multiple avenues to ensure
that physics are included to ensure scalability and accuracy.
To achieve this, the distributed controller role and interaction
discovery (RID) algorithm, detailed in [27] is considered. The
RID algorithm is based on real and reactive power flow sensi-
tivities with respect to control changes. It identifies essential,
critical, and redundant controllers for the controllability of a
system, as well as control support groups.

• Essential controllers are the minimal set of devices re-
quired to maintain system controllability.

• Critical controllers are essential controllers that are irre-
placeable and mandatory for system controllability.

• Redundant controllers are the devices that reinforce the
control capability of essential controllers.

• Control support groups contain devices that are highly
coupled in terms of impact on the control objective and
with each other.

In [27], the effectiveness of the RID algorithm for reducing
the corrective control search space is shown. Additionally, in
[28] the RID algorithm reduces power system violations by

leveraging different controllers. The RID capability for tack-
ling the dimensionality curse for power system-side corrective
actions can be directly applied to SCORE to inform response
decisions, as shown in Fig. 1.

However, for cyber-physical systems, where both cyber-
physical corrective actions may be needed, no such character-
ization is available for cyber controls. Furthermore, although
efforts are looking into incorporating cyber corrective actions,
the strategy for selecting one cyber corrective action over
another is not available.

Therefore, to investigate how that characterization and strat-
egy can be achieved, we investigate leveraging the RID algo-
rithm with characterizing cyber corrective actions. Section V-A
details this investigation and preliminary results. Specifically,
the RID algorithm will help SCORE address the challenge of
scalability and directly inform the RL decisions.

IV. GENERAL FRAMEWORK

The proposed framework is shown in Fig. 1, with modules
as follows:

Fig. 1. General Framework of SCORE.

A. Data Collection Module

Real-time data and risk information will send to the Data
Fusion module from DNP3 master, PowerWorld Dynamic
Studio (PWDS) and CORE network. Data fusion techniques
will be deployed and used to examine data from multiple
sources, such as sensors, historical records, and extract data
features.

B. State Evaluation Submodule

The main purpose of the state evaluation module is assessing
the overall status of the current power system and determine
whether or not the system is facing a disturbance. A com-
prehensive assessment with the impacts caused by the distur-
bances will provide system operators with decision support.
This classification allows for a more accurate and effective
response to system disruptions, enabling the deployment of
targeted mitigation strategies.



C. RID Submodule
A significant challenge that MDP-based models face is the

dimension curse [29]. It is important to assess methods to
reduce the number of agents and the action spaces by figuring
out the most relevant corrective actions. The RID algorithm
can be applied to cyber-physical systems and characterize
corrective actions.

In [6], [30], the roles and groups are determined using
the 3-step process in the RID algorithm, which is defined as
followed:

1) Obtaining Sensitivity Matrix: The sensitivity matrix Ψ
provides a linearized relationship between control ac-
tions and response of the system to the actions.

2) Finding Controllability-Equivalence Sets: The sensitivity
matrix rows that show the mutual influence of controls
within controllers are clustered to generate the control
support groups. Row vectors vi and vj are compared
using the Coupling Index (CI), which is the cosine
similarity as shown below.

CI = cos(θvivj ) =
vi · vj

∥vi∥∥vj∥
(1)

3) Finding Critical, Essential and Redundant Sets: The
columns of Ψ are used to identify the critical, essential
and redundant controllers in the system, where they are
placed, and to create applications for mitigation and
response. [31] describes the LU factorization method.
The decomposition of [Ψ]

T is obtained as:

[Ψ]
T
= P−1LFUF (2)

LF =

[
Lb

M

]
(3)

Using the Peters-Wilkinson [31] method, [Ψ]
T is fac-

tored, where P is the permutation matrix and LF and
UF are the lower and upper triangular factors of dimen-
sion n, respectively. M is a sparse, rectangular matrix.
The new basis has the structure:

LCER = LFL
−1
b =

[
CE

CR

]
(4)

Each accessible controller is represented by a row in the
modified matrix . [32]. The identification matrix, or CE,
has rows that correlate to key controllers. The redundant
controllers are represented by the rows of CR.

D. RL-based Module
A RL-based module is initiated, consisting of three sub-

modules: Agent, and Simulation Environment.
1) Agent Submodule: While the RID algorithm is applied to

select the most relevant actions and agents, limited agent and
action spaces are decided by the RID module. By receiving
feedback from the environment in form of rewards or penalties
by the chosen actions, the agent will finalize and provide the
optimal solution [17]. The possible agents would be physical
components like generators or lines, or cyber components such
as breakers or routers. A collection of actions to be applied
will be described in Section IV-D2.

2) Action Spaces for CPS Remediation and Mitigation:
From NERC PRC-012-2 [33], remedial action schemes should
maintain reliability limits and prevent disturbance propagation.
A number of deployed solutions that help grid reliability
are detailed in [34]. A related work is HARMONIE-SPS, an
adaptive, response solution for cyber-physical disturbances [6];
Disturbances are first classified to three categories: cyber,
physical and cyber-physical. Hence, we adopt separate action
spaces for different agents, shown in Table II.

TABLE II
POSSIBLE ACTION SPACES FOR CPS DURING DISTURBANCES

Impacts Agent Actions

Impacts
on
Cyber-
physical
System

Impacts
on
Physical
System

Generator

Change Real Power

Change Reactive Power

Isolate/Shut down

Change to different buses

Change Voltage Maganitude

Tranmission
Line

Trip/Close

Load

Increase/Decrease

Change to different buses

Isolate/Shut down

Impacts
on
Cyber
Network

Router

Connect/DisconnectHMI

Ethernet
Switches

Breaker/Relay Open/Close

Firewall
Connect/Disconnect

Reconfigure

3) Simulation Enviornment Submodule: Similar to Grid2op
[35], the simulation environment in SCORE must support with
power system analysis based on its cyber-physical properties.
Power flow and contingency analysis must be incorporated
into the environment to enable the performance of RL agents
to be tested and evaluated.

E. Human Machine Interface (HMI)

An HMI is applied for visualization and interaction. The
responsibilities of HMI include displaying the suggest correc-
tive actions, interacting with the users, and receiving feedback
throughout the process. If a solution appears incorrect or
unreasonable, the users can intervene and send a negative
feedback to the RL model. The rewards or feedback from
users further refine the RL model.

The SCORE engine is not intended to be a fully automated
machine. Rather, the goal is a decision support system that
incorporates model information and human expertise, while
safely harnessing the power of artificial intelligence.

V. PRELIMINARY RESULTS: HOW SENSITIVITIES CAN
HELP AI-BASED CYBER-PHYSICAL OPTIMAL RESPONSE

In this section, we verify our preliminary results on how
RID and RL algorithms can facilitate building SCORE and



the RL-based model. We considered the modified WSCC 9-
bus system. [36] with 9 buses, 2 generators and 1 battery
storage. Two 4000 kVAR capacitors are added to buses 7 and
9, respectively, as shown in Fig.2. A battery supply takes the
place of one of the generator. In this instance, the transformers
are regarded as voltage regulators or online tap changing.
We assumed Battery 1 facing Denial of Service attacks and
causing voltage drop and load imbalanced.

Fig. 2. WSCC 9-bus one-line diagram.

A. RID Algorithm

A challenge that MDP-based models face is the dimension-
ality curse [29]. Thus, it is important to assess methods to
reduce that problem for action spaces.

In this circumstance, we focus on investigating how RID
algorithm could apply to determine the capacitors and provide
the necessary reactive power support. The first step is to set up
the sensitivity matrix. The sensitivities offer an understanding
of the relationship between the capacity of available capacitors
and buses under overload conditions. We create a sensitivity
matrix based on the relationship between the injected reactive
power and the resulting change in voltage

∆Vbus,overloaded = [Ψ] ·∆QMVar (5)

Subsequently, the RID algorithm is applied to the sensitivity
matrix, leveraging LU decomposition. For this case study, both
the capacitors are the critical ones. This provides insight into
next steps for RL technique.

TABLE III
WSCC-9 BUS RID RESULT

Violations Critical Controllers

Bus voltage violations Capacitor 1, 2

B. RL Technique

To keep the voltage within 0.95 - 1.05 p.u., capacitors
and generators located at strategic positions are controlled for
the optimization of the Volt-Var under voltage profile, power
losses and device constraints.

A loss function could be generated as Eq.6:

min
s.t.

xFvolt(x) + Fctrl(x) + Fpower(x) (6)

Two popular policy based RL algorithms namely Proximal
Policy Optimization (PPO) and Advantage Actor Critic (A2C)
are used for benchmarking [37], [38]. The results of normal
state rewards and rewards facing cyber-disturbance can be
illustrated by Fig.3 and Fig.4 respectively.

Fig. 3. Reward of RL algorithms in 300k steps in Normal Condition

Fig. 4. Reward of RL algorithms in 300k steps in Battery1 Denial of Service
Condition

It is evident from comparing Figs 3 and 4 that the scenario
with DoS interference has a larger reward at the beginning of
the PPO algorithm’s training phase. The load profile’s random
initialization was the cause of this. The load values in the load
profile range from 0 to 1. When the condition is substantially
loaded, or 1, the voltage value decreases significantly. When
the condition is weakly loaded, or 0, the opposite thing
occurs. Following an adequate length of training, the load
profile’s random initialization is thoroughly investigated, and
as a result, the reward eventually settles at a lower value
than it was during the first training phase. Based on the two
figures, we can infer that the PPO algorithm maximizes the
reward because it performs better than the A2C method in less
steps. After verifying the outcome in the surroundings, Fig. 4
shows that all bus voltages are within the ±5% tolerance. It is
demonstrated through validation that an RL-based model could
restore both scenarios’ typical conditions for the system.



VI. CONCLUSION

A framework of SCORE with RL and RID and a review on
supportive techniques are presented. This work introduces an
automatic optimal response framework against cyber-physical
disturbances. This continued investigation will directly influ-
ence cyber-physical data analysis and metric types as well as
provide a cyber corrective action characterization approach.
The cyber-physical extension of RID can help SCORE tackle
the scalability challenge and directly inform its RL-based
decisions with a-priori corrective action analysis. In our
subsequent research, we aim to extend the application of this
methodology across a larger case study.
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