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ABSTRACT | Modern power systems are the backbone of our

society, supplying electric energy for daily activities. With the

integration of communication networks and high penetration

of renewable energy sources (RESs), modern power systems

have evolved into a cross-domain multilayer complex sys-

tem of systems with improved efficiency, controllability, and

sustainability. However, increasing numbers of unexpected
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events, including natural disasters, extreme weather, and

cyberattacks, are compromising the functionality of modern

power systems and causing tremendous societal and eco-

nomic losses. Resilience, a desirable property, is needed in

modern power systems to ensure their capability to withstand

all kinds of hazards while maintaining their functions. This

article presents a systematic review of recent power sys-

tem resilience enhancement techniques and proposes new

directions for enhancing modern power systems’ resilience

considering their cross-domain multilayer features. We first

answer the question, “what is power system resilience?” from

the perspectives of its definition, constituents, and categoriza-

tion. It is important to recognize that power system resilience

depends on two interdependent factors: network design and

system operation. Following that, we present a review of

articles published since 2016 that have developed innova-

tive methodologies to improve power system resilience and

categorize them into infrastructural resilience enhancement

and operational resilience enhancement. We discuss their

problem formulations and proposed quantifiable resilience

measures, as well as point out their merits and limitations.

Finally, we argue that it is paramount to leverage higher

order subgraph studies and scientific machine learning (SciML)

for modern power systems to capture the interdependence

and interactions across heterogeneous networks and data

for holistically enhancing their infrastructural and operational

resilience.
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I. I N T R O D U C T I O N
Power systems are the backbone of modern society as
they generate, transfer, and deliver electric energy from
different energy resources to end users. With more than a
century of development, modern power systems are evolv-
ing into a wide-area weather-dependent c-physical com-
plex system of systems. Their modern configurations are
more efficient and flexible and have better economic allo-
cation of energy resources than their predecessors. Their
interactions exist among different sectors of generation,
transmission, distribution, and customers. The increasing
penetration of renewable energy sources (RESs), includ-
ing solar and wind energy, is changing traditional grid
configurations in the quest to reduce the emission of
greenhouse gases and create a cleaner and more sus-
tainable environment [1], [2]. Leveraging these benefits,
power systems, including the distribution networks and
microgrids (MGs), have been increasingly integrated with
other energy infrastructures, including thermal and gas
networks. This integration turns power systems into multi-
energy systems that help better manage energy sources,
contributing to the development of decarbonized and
sustainable energy ecosystems [3]. All these benefits are
owed in part to the digitalization of power systems with
the integration of communication networks. Operational
power system data can be more efficiently transferred
over wide areas, improving operators’ understanding and
control for security and economics. It also gives end users
the ability to schedule their energy consumption according
to weather and price. These data have also enabled recent
advancements in distributed automatic control algorithms
and machine learning techniques that control local devices
more efficiently and reliably. As a result, modern power
systems have evolved into a cross-domain multilayer com-
plex system of systems with heterogeneous networks and
data from physical, cyber, weather, and societal domains.

New threats come with new technologies and devel-
opment. As a cyber–physical system, the resilience and
security of power systems are threatened by natural disas-
ters [4], cyberattacks [5], mis-operations [6], geomagnetic
disturbances [7], and even high-altitude electromagnetic
pulses (HEMPs) [8], [9]. The widespread presence of
power networks exposes them to natural disasters, such
as hurricanes, earthquakes, and floods. The increasing
frequency of extreme weather events is disrupting the
energy supply, thereby jeopardizing the economy and
putting public health and safety in danger, which can
devastate affected communities [10]. Furthermore, the
power grid is aging, becoming increasingly susceptible to
threats that lead to infrastructure damage and blackouts
for end users [4], [11]. The integration of RESs can impact
the grid’s voltage and frequency stability, causing power
quality issues [12]. Meanwhile, the intermittency of RESs
introduces further uncertainties to power system operation

[13], [14]. The increasing reliance on communication net-
works also introduces cyber threats to the security and reli-
ability of power system operations. Examples can be found
from [15], [16], and [17], demonstrating that adversaries
can exploit the vulnerabilities in communication networks
to obtain the control of power systems and create distur-
bances. Other threats, including energy theft [18] and false
data injections (FDIs) [5], can compromise the situational
awareness and reliability of the system. Overall, there
is a pressing need to enhance power systems’ resilience
to ensure their security, reliability, and functionality of
consistently supplying electric energy, particularly in light
of the increasing prevalence of unexpected disturbances
across different domains.

This article presents a systematic review of power sys-
tem resilience enhancement techniques that aim to harden
the infrastructure and proactively defend against threats.
Unlike existing works that primarily review resilience
enhancements in the physical domain, namely the func-
tionality and resilience of transmission, distribution, and
generation systems, our aim is to broaden the perspective
on modern power systems, considering their intercon-
nected cross-domain multilayered architecture encompass-
ing physical, cyber, weather, and human networks. We
select articles published since 2016 that have developed
innovative methodologies to provide a timely review, and
we discuss their merits and limitations regarding prob-
lem formulation and quantifiable resilience measures. As
modern power systems have evolved into a cross-domain
multilayer complex system of systems, it is essential to
consider the interdependence and interactions across het-
erogeneous networks and data to holistically enhance the
system’s inherent resilience. Doing so, let us operators and
stakeholders holistically design and operate modern power
systems with improved resilience against increasing unex-
pected events from physical, cyber, weather, and societal
domains. However, there is a lack of consensus on how
to holistically analyze these interconnected heterogeneous
networks, characterize their interdependence and inter-
actions regarding their network structures and data, and
enhance modern power systems’ inherent resilience. In
order to address these issues, we propose new directions
of using higher order subgraph analyses and scientific
machine learning (SciML) for enhancing modern power
system resilience. The main contributions of this article
include the following.

1) We present data on the U.S. electric disturbance
events from 2011 to 2022, including the annual num-
ber of events, loss of load, and affected customers.
By categorizing these events into natural disasters,
physical attacks, system issues, and cyber/suspicious
events, we observe that natural disasters are the most
disastrous factors compromising power grids, while
cyberattacks are emerging threats that directly affect
customers. These facts call for a holistic approach
to enhancing the resilience and security of modern
power systems, considering the interdependence and
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interactions across different networks from cyber,
physical, weather, and societal domains.

2) By answering the question, “what is power system
resilience?”, from the perspectives of its definition,
constituents, and enhancement categorization, we
argue that it is important to recognize that
infrastructural resilience lays the foundation for oper-
ational resilience, and operational resilience guides
the hardening of infrastructural resilience. These two
aspects of power system resilience are interdepen-
dent and mutually promote the development and
enhancement on each other. In particular, it is essen-
tial to value the compounded impact across intercon-
nected heterogeneous networks from physical, cyber,
weather, and human domains to enhance both infras-
tructural and operational resilience for modern power
systems.

3) We present a comprehensive review of articles that
have developed innovative methodologies to enhance
power system resilience. We categorize the reviewed
articles into infrastructural resilience enhancements
and operational resilience enhancements and classify
their contribution to resilience enhancement at dif-
ferent phases. We also discuss their merits regarding
their problem formulations and proposed quantifi-
able resilience measures as well as the gap between
research and realization.

4) In order to enhance modern power systems’ inher-
ent resilience, it is essential to consider their cross-
domain multilayered architectures. We believe that it
is significant to incorporate heterogeneous networks
and data across physical, cyber, weather, and human
domains to develop holistic criterion and approaches.
It is necessary to emphasize the value of hetero-
geneity in physical, cyber, and social networks along
with granular modeling to derive new standards and
requirements for designing and operating modern
power systems.

5) We propose two new research directions: higher
order subgraph analyses and SciML, to understand
the interdependence and interactions across different
networks and data, facilitating trustworthy decision-
making to enhance the inherent resilience of mod-
ern power systems. This article includes preliminary
case studies using higher order subgraph analyses to
disclose key local structures contributing to power
networks’ resilience as well as to identify critical con-
nections in cyber–physical power networks. In addi-
tion, we also propose a SciML-based framework to
process large amounts of heterogeneous data across
different networks and provide explainable and trust-
worthy decision-making for system operations.

This article is organized as follows. Section II ana-
lyzes 12-year data of U.S. power grid disturbances.
Section III discusses the definition, constituents, and
enhancement categorization of power system resilience.
Sections IV and V review enhancement techniques on

Fig. 1. Annual U.S. power grid events, loss of load, and affected

customers (2011–2022) [19].

infrastructural resilience and operational resilience at dif-
ferent phases regarding the development of disturbances
on power systems, respectively. Section VI discusses the
merits and limitations of reviewed approaches regard-
ing their problem formulation and proposed quantifiable
resilience measures. Section VII presents new opportu-
nities to enhance modern power systems resilience con-
sidering heterogeneous networks and data. Section VIII
concludes this article.

II. 2 0 1 1 – 2 0 2 2 U . S . P O W E R G R I D S
E V E N T S
The data on the U.S. electric disturbance events (Form
DOE-417)1 is available in [19], which provides valuable
insights into the reliability and resilience of the country’s
power systems. With a 12-year dataset spanning 2011 to
2022, Fig. 1 shows the annual statistics of grid events,
loss of load, and affected customers in the U.S. power
systems. Notably, from 2011 to 2018, there was a decreas-
ing trend of reported grid events and associated loss of
load, although the number of affected customers fluctu-
ated. However, from 2019 to 2020, there was a dramatic
increase in grid events, loss of load, and affected cus-
tomers, due to several unexpected extreme events, includ-
ing hurricane, floods, and wildfire [20], [21]. Stakeholders
and operators learned valuable lessons from these events,
resulting in improvements in the system’s performance in
the past two years. Nevertheless, despite these improve-
ments, the overall condition of the U.S. power grid appears
to be worse than in the earlier years of this decade.

We have categorized the events into four groups:
natural disasters, physical attacks, system issues, and

1The Electric Emergency Incident and Disturbance Report (Form
DOE-417) collects information on electric incidents and emergencies.
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Fig. 2. U.S. power grid events distribution (2011–2022) [19].

cyber/suspicious events based on the events’ description.
Natural disasters include all events such as severe weather,
flood, storm, extreme temperature, and earthquake; phys-
ical attacks include all vandalism, sabotage, and attacks
on physical network; system issues include all disturbances
on physical systems, such as physical faults, energy defi-
ciency, equipment failure, relay mis-configuration, and
mis-operations; and cyber/suspicious events include all sus-
picious activities on communication networks and uniden-
tified activities. Fig. 2 provides the percentages of each
type of disturbance with respect to all grid events and the
breakdowns of all grid events based on these categories for
a number of events, a number of affected customers, and
the amount of loss of load.

It can be seen that natural disasters have happened
the most, accounting for 38.7% of all events, followed
by physical attacks (29.4%) and system issues (24.5%).
Cyber/suspicious events only account for 7.5% of all events.
Natural disasters and physical attacks are responsible for
most power grid disturbances and outages because they
directly compromise the system’s functionality and are
easy to be caught and reported. System issues are mainly
because of insufficient situational awareness for system
planning, operation, and protective relay configuration.
Cyber/suspicious events are less frequent than other types
of disturbances due to the following reasons. On the one
hand, cyberattacks do not directly compromise physical
system operations, and cyber threats can remain dor-
mant until triggered and inflict whatever physical impact
on the system might be. On the other hand, commu-
nication networks have the mechanism to detect and
defend cyber threats to avoid compromise of the physical
system, and only the sophisticated threats that bypass
intrusion detection systems have the capability of inter-
rupting the system’s operation and compromising power
systems’ security and resilience. However, the annual
statistics for each category exhibit an urgent need to
protect power systems against cyberattacks. The annual
number of cyber/suspicious events has increased from
5 to 66 since 2017. Meanwhile, these events have been
reported as the cause for compromising power systems’
operation and resulting in loss of load from 2020 to 2022
but were not reported or identified as the cause before
those dates. At the same time, the number of system issues
has also increased. It is plausible that more cyberattacks
happened in power systems recently, and they compro-
mised the system with insufficient situational awareness,
leading to system issues, such as mis-operations and mis-
configurations on industry controllers. While discovering
the true cause of system issues is not the objective of
this work, we emphasize the importance of identifying
the real cause of system disturbances and the need for
designing resilient cyber and physical networks for secure
and resilient modern power systems. It is of great interest
to understand the underlying relationship of interdepen-
dence and interactions across different domains in mod-
ern power systems for sustainable and resilient electricity
service [22].

In addition to the U.S. power outages, the studies
in [23], [24], [25], and [26] also document historical
worldwide major blackouts and analyze their sources and
impacts. Overall, there are increasing contingencies in both
cyber and physical domains that threaten the security and
resilience of power systems.

The U.S. National Academies’ grid resilience report
specifically calls for enhanced power system abilities to
prepare for, endure, and recover from severe hazards [27].
Such abilities are recognized as the nature of resilience
[28]. Even though there are various procedures and guide-
lines for power systems operation [29], the abruptness
of unexpected contingencies is hard to predict, especially
considering cyber events and cascading failures [30].
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In addition, modern power and energy systems have
integrated more RES to address the increasingly severe
climate crisis. This integration of RES necessitates the
incorporation of climate, weather, and energy system mod-
els to support infrastructure planning, real-time operation,
and recovery toward climate-resilient power systems [31].
It is important to acknowledge that there is no way to
make power systems completely invulnerable to physical
or cyber disruptions and to the effects of extreme weather
events [22]. In order to ensure the security and resilience
of power systems, it is crucial to minimize (if not eliminate)
the feasibility and impact of threats [32].

III. W H AT I S P O W E R S Y S T E M
R E S I L I E N C E ?
A. Definition of Power System Resilience

The word resilience originates from the Latin word
“resiliere,” which means to “bounce back.” In the scientific
arena, this meaning of resilience can date back to the
1970s, where Holling [33] defined resilience in ecology as
a measure of the ability to absorb changes of variables and
parameters in systems. The common use of resilience is to
imply the ability of an entity or system to return to normal
condition after the occurrence of an event that disrupts its
state. It is a general concept that has multiple dimensions
and definitions in different specialized fields such as psy-
chology, economics, biology, and engineering [34].

For power systems, different authorities have provided
their definitions of resilience. Both the National Infrastruc-
ture Advisory Council (NIAC) and North America Elec-
tric Reliability Corporation (NERC) view power system
resilience as preparing and planning, absorbing, recover-
ing, and adapting to adverse events [35], [36]. The U.K.
Energy Research Center (UKERC) has defined resilience as
“the capability of an energy system to tolerate disturbance
and to continue to deliver affordable energy service to
consumers” [37]. The U.S. Power Systems Engineering
Research Center (PSERC) has recognized resilience as a
system’s capability to gradually deteriorate under increas-
ing exertion and rapidly recover to its previous secure
status [7], [38]. The Electric Power Research Institute
(EPRI) has defined power system resilience with three ele-
ments: prevention, recovery, and survivability with respect
to the development of disruptions [39]. The U.S. National
Association of Regulatory Utility Commissioners (NARUC)
has described resilience in terms of robustness and recov-
ery characteristics of the power system during and after
disasters [39]. The U.S. Presidential Policy Directives-21
(PPD-21) has defined resilience as “the ability to prepare
for and adapt to changing conditions and withstand and
recover rapidly from disruptions” [40]. As a cyber–physical
system, the U.S. Department of Energy (DOE) has defined
power system cyber–physical resilience as the ability to
avoid or withstand grid stress events without suffering
operational compromise or to adapt to and compensate
for the resultant strains so as to minimize compromise via
graceful degradation [41].

Based on the above definitions, it is evident that the
key characteristic that describes power system resilience is
its ability to anticipate, absorb, and recover from external
disruptions, especially with respect to the high-impact low-
frequent (HILF) events in power systems. To be more
specific, the anticipation refers to the system’s ability to
avert any deterioration from the disturbances, the absorp-
tion is the system’s ability to tolerate the disturbances
and minimize deterioration, and the recovery is the sys-
tem’s ability to restore the compromised system. As power
systems evolve into smart grids, another essential ability
that should also be included is learning from past lessons.
The system should have the adaptability of enhancing its
resilience from previous events with improved capabilities.

B. Quantifying Power System Resilience

Conventionally, power systems are evaluated by four
main reliability measures, including system average
interruption duration index (SAIDI), system average inter-
ruption frequency index (SAIFI), customer average inter-
ruption duration index (CAIDI), and momentary average
interruption frequency index (MAIFI), based on historical
data and report. They can generally represent how reli-
able the system is and provide instructive guidance for
investment on strengthening power systems architectures.
While reliability is one quantifiable aspect of power system
resilience using the above measures, resilience is different
from reliability. Reliability is evaluated under low-impact
high probability events, which have limited impact on
the whole system in a short period. Resilience is investi-
gated with HILF events, which have large and long-term
consequences [42]. Quantifying power system resilience
necessitates the consideration of power system’s cross-
domain multilayer architectures surrounding cyber, phys-
ical, weather, and human factors. As a spatial–temporal
property of the system, it is necessary to evaluate how
HILF events could impact the status of power systems
and the response or countermeasures that stakeholders
take against those events, especially under unexpected
events such as cyberattacks and extreme weather. It is
of great significance to quantify power system resilience
through a cross-domain multilayer perspective with the
consideration of compounded impacts from other external
influences to system functionality either qualitatively or
quantitatively.

The resilience trapezoid is widely used in existing arti-
cles to describe, quantify, and demonstrate resilience for
power systems [43], [44], [45], [46], [47], [48], [49].
This graphical representation can effectively associate the
spatiotemporal development of hazards with power sys-
tems’ performance against corresponding hazards regard-
less of the disturbances’ sources or causes. Fig. 3 shows
a time-variant power system resilience transition when a
disruptive event compromises the system. As an inherent
property, the initial resilience level (Rinitial) is assumed to
be the optimal resilience level, which depends on the net-
work structure and operation schemes. Once the disruptive
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Fig. 3. Power system trapezoid resilience curve with a disruptive

event.

event happens at te, the infrastructure is compromised.
Adaptive actions are taken to maximally maintain the
system’s integrity. The adverse impact will deteriorate the
resilience level to Rdeteriorative until the system reaches
equilibrium at td. As to how much the reduction of the
resilience level is, it depends on the system’s inherent
ability to absorb disturbances and function securely. Such
ability comes from the system’s structure and adaptive
actions. When the system is stable at Rdeteriorative and
enough information is collected, operators can start restor-
ing the system at tr. Once the restorative process is done,
the system is in a more resilient state (Rrestored) at tpr. If
the infrastructure is not damaged by the event, Rrestored

should be Rinitial. Otherwise, the network structure will be
evaluated and operators need to decide how to reconstruct
the infrastructure. Extra time (from trc to tprc) will be
spent on the recovery process to strengthen the system’s
resilience level to Rinitial or even a more resilient state.

At different phases of resilience transition depicted
in Fig. 3, five characteristics dominate the property
of resilience in power systems, which are robust-
ness/resistance, resourcefulness, response, redundancy, and
recovery. Robustness/resistance represents power systems’
inherent ability to absorb disturbances and function
securely without human intervention, referring to the abil-
ity of a power system to absorb a shock and continue
to operate. It relies on the system’s infrastructure and
operation schemes on physical networks. Resourcefulness is
the ability of power systems to skillfully manage a crisis as
it occurs, showing how fast the information and data of the
system can be transferred to operators and stakeholders
for decision-making. It relies on the infrastructure and
operation on cyber networks. How the cyber resources are
allocated and how the information and data are managed
are critical. Response is how the operators and/or energy
management systems (EMSs) decide the remedial actions
to relieve the system’s stress in a timely manner. It heavily
depends on the information collected and the knowledge
of the physical system. Redundancy depends on the design
of the system. For instance, when contingencies happen,
the extra generation reserve can ensure the energy supply
and the redundant branches can provide backup pathways

for supplying electric energy. With more investment on
redundancy, the system can be more resilient. Recovery
is to completely recover the system from the damage to
its initial state. It involves the activities on infrastructure
construction and system operation.

From the above discussion, we can say that power
system resilience consists of infrastructural resilience and
operational resilience, both of which depend on how the
infrastructure is designed and how the system is operated
[50]. These two aspects overlap in the contexts of robust-
ness/resistance, resourcefulness, redundancy, and recovery.
Such characteristics determine the level of resilience at
each stage as they depend on both the infrastructural
architectures and operation schemes. Even though response
mainly falls within operational resilience as it involves
remedial operation, the decisions made by operators are
based on the information collected through cyber networks
and the understanding of physical networks. Thus, there
is underlying influence of infrastructural resilience on
response.

Generally speaking, power system resilience is a spatial–
temporal measure that depends on its infrastructure, oper-
ation schemes, and surrounding environment (normal
and adversarial). Infrastructural resilience represents the
power system’s inherent ability of absorbing and tolerating
disturbances, while operational resilience represents how
human-made decisions can ensure the system’s resilience
during normal situations and efficiently and effectively
defend and restore the system back to the original resilient
state during and after adversarial situations. There is a
mutual influence between infrastructure resilience and
operational resilience.

C. Power System Resilience Enhancements

As presented in Fig. 3, there are different phases of
power system resilience that correspond to the progres-
sion of an event. Thus, different resilience enhancement
techniques can be applied to specific stages, to improve
the system’s robustness, ensure that the system does not
degrade too much or at all when disruptive events hap-
pen, or accelerate the response so that the system can
more efficiently and securely restore the energy supply.
Infrastructure resilience, namely the cyber and physical
network design, lays the foundation for normal and contin-
gency operations. Operational resilience can identify weak-
nesses in infrastructure resilience and provide guidance for
enhancement, such as adding redundancy or improving
security on components. Fig. 4 presents a guideline for
power system resilience enhancements at different phases,
from perspectives of network construction and proactive
actions [51], corresponding to infrastructural resilience and
operational resilience.

The proactive actions are short-term operations to
enhance power systems’ reliability and security against
events. Meanwhile, network construction refers to long-
term planning approaches that improve power systems’
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Fig. 4. Power system resilience enhancement at different stages,

adopted from [51].

inherent ability to absorb disturbances and maintain func-
tionality securely. Prior to an event, the detection of a
system’s vulnerability and the assessment of the event’s
impact can help operators better allocate resources to
prevent the system from experiencing unexpected contin-
gencies or minimize their adverse impact. When threats
interrupt power systems’ normal operations, operators
must take countermeasures based on their observability
of the system. In this way, operators need to make an
optimal decision with available information to ensure
the system’s overall reliability and security during the
event. After an event, restoration should be carried out
reliably and efficiently with the given information. Once
the system is recovered from the event, system planners,
operators, and stakeholders should learn from the expe-
rience and harden the system with new construction and
operation plans, with the purpose to enhance the systems’
robustness, redundancy, and resourcefulness. When similar
events happen in the future, the system is able to maintain
its secure and reliable operation with improved resilience.
Apart from lessons learned from past events, new insights
and knowledge of resilience could also provide guidance
on resilient network designs.

From a holistic perspective, the resilience enhancement
techniques can be further classified into assessment, rein-
forcement, and reaction, which together comprise the mod-
ern power system resilience enhancement life cycle, as shown
in Fig. 5.

1) Assessment refers to techniques that perform ahead-
of-time analyses of threats, leveraging their properties
and impacts on power systems’ security and func-
tionality. The goal of assessment is to provide enough
situational awareness for operators and stakeholders
to better prepare for potential contingencies prior to
their occurrence.

2) Reinforcement refers to techniques that can strengthen
power systems’ ability to tolerate disturbances and
maintain reliable and secure functionality through
resilient network design and operations. The goal of
reinforcement is to improve the system’s capability to
anticipate threats and fortify its security against them.

3) Reaction refers to techniques of automatic response
and human-made control commands against threats
using real-time data and information. The goal of

reaction is to ensure the secure and reliable func-
tionality of power systems during hazards and to
maximally and securely maintain a continuous supply
of energy.

This modern power system resilience enhancement life
cycle also relates to infrastructural resilience and opera-
tional resilience. Infrastructural resilience depends on how
the network is designed and operated during normal and
adversarial scenarios, and thus, reinforcement falls entirely
within it, while assessment and reaction are partially within
it. Operational resilience mostly consists of assessment and
reaction, but all of their techniques rely on information and
data of the system. Moreover, as a life cycle, these elements
mutually influence each other. For example, techniques in
assessment can identify vulnerable parts that reinforcement
needs to strengthen with better protection and provide
situational awareness that reaction can leverage to better
prepare countermeasures. Meanwhile, techniques in rein-
forcement can increase the resourcefulness and redundancy
in both cyber and physical networks. In this way, reaction
techniques can leverage more flexibility in the system, and
assessment techniques can obtain and deliver information
more accurately and efficiently. Techniques in reaction
heavily depend on data and information from assessment
and resource allocation determined by reinforcement. To
operate more securely under disturbances with enhanced
resilience, the system needs to harden its network and
improve its prediction and assessment techniques.

In this article, we have selected and reviewed arti-
cles since 2016 that developed resilience enhancement
techniques to improve power systems’ resilience against
unexpected events, including natural disasters, extreme

Fig. 5. Power system resilience enhancement life cycle.
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Table 1 Summary of Power System Resilience Enhancement Techniques

weathers, and cyberattacks, from a specific perspective or
at a specific phase in the power system resilience trape-
zoid. Table 1 presents the classification of all reviewed
articles from three perspectives of resilience, including
resilience characteristics: robustness/resistance, resource-
fulness, response, redundancy, and recovery; resilience
categorization: infrastructure resilience and operational
resilience; and resilience enhancement life cycle: assessment,
reinforcement, and reaction. It is important to mention
that some techniques belong to more than one element
within these categorizations, as all these elements are
interdependent and mutually promote the development
and enhancement of each other. Sections IV–VI analyze
and discuss these techniques.

IV. I N F R A S T R U C T U R A L R E S I L I E N C E
E N H A N C E M E N T
Modern power systems include transmission networks,
distribution networks, generation units [traditional gener-
ators and distributed energy resources (DERs)], and com-
munication networks. As a cyber–physical system, the com-
munication networks collect and deliver the information
of the entire system to operators for decision-making and
operations. The resilience of the communication networks
is paramount for the whole grid. Thus, the infrastructural
resilience relies on the design and construction of all of
the above networks, as well as their risk assessment and
preparation. The following sections present the review
of representative works in resilient network design and
construction for transmission, distribution, and commu-
nication networks, as well as techniques regarding threat
assessment and ahead-of-time planning.

A. Resilient Transmission Network Design

Transmission is critical to addressing the climate crisis
through the decarbonization of the power sector, increas-
ing transportation electrification, and enabling the clean
energy transition. The design and operation of transmis-
sion networks always follow N − 1 reliability [156]. How-
ever, with the increasing abruptness of threats from cyber

and physical domains, there is a need to expand transmis-
sion capacity with stronger and more numerous energy
delivery pathways for its reliability and resilience against
unexpected multihazard scenarios. Modernizing, harden-
ing, and expanding the grid will enhance the resilience of
the entire electric system, while ensuring energy is avail-
able to customers where and when it is needed most. A suc-
cessful transmission network requires deliberate planning
and innovative approaches from multiple perspectives.

Nagarajan et al. [52] developed a two-stage mixed-
integer stochastic optimization model that aims to upgrade
a transmission network’s capacity against damages with
minimum investment, considering options from build-
ing new lines, hardening existing lines, adding flexible
alternating current transmission system (FACTS) devices,
and allocating DERs. Nezamoddini et al. [53] developed
a mixed-integer linear optimization model to determine
the optimal investment of protection systems for resilient
transmission networks to ensure the load supply against
physical attacks. Shao et al. [54] proposed a two-stage
optimization model to integrate the planning of the trans-
mission network and natural gas transportation system to
improve power grid resilience with less load curtailment
in extreme conditions. Lagos et al. [55] proposed a Monte
Carlo simulation-based framework considering four phases
of power systems under natural hazards to identify the
optimal network investments for the highest level of hedge.
Panyam et al. [56] proposed a biological food web-based
approach to optimize the design of power systems for
improved inherent resilience against N − x contingen-
cies. Huang et al. [57] proposed a deep transfer learning
approach using bidirectional long short-term memory to
identify resilient transmission network structures against
short-term voltage stability issues caused by hazards.
Garifi et al. [58] formulated a mixed-integer resilience
investment optimization problem for transmission net-
work to minimize unserved load over a multitime-period
restoration horizon, which determines the enhancement
of power grid components considering recovery strate-
gies of unit commitment, transmission line switching,
and generator dispatch. Moradi-Sepahvand et al. [59]

372 PROCEEDINGS OF THE IEEE | Vol. 112, No. 4, April 2024



Huang et al.: Toward Resilient Modern Power Systems

built a mixed-integer optimization model for a multistage
expansion co-planning model of transmission lines, battery
energy storage, and wind farms against extreme weather
events for enhanced resilience. This model leverages a
fragility curve, a chronological time-period clustering algo-
rithm, and a deep learning approach to consider the
adversarial impact of extreme event and the projection
of load growth. Huang et al. [60] utilized the long-term
resilient food web-based approach again as a benchmark
to expand power transmission networks through a mixed-
integer optimization model to improve the system’s inher-
ent resilience with enhanced capability of anticipating
unexpected adversaries with fewer operational violations.
Stürmer et al. [61] combined a probabilistic line failure
model with a power grid model to simulate the spatiotem-
poral co-evolution of wind-induced cascading failures on
power systems. This approach can serve as an effective
tool in identifying and hardening critical lines, thereby
improving the grid’s resilience against tropical cyclones.

B. Distribution Network With MG Applications

Distribution networks are the last step of supplying
electrical energy to consumers. Traditional distribution
networks are highly dependent on the main grid to receive
energy. Any adverse events, such as cyberattacks, wildfires,
and storms, occurring in any sector of power systems could
cause outages in distribution system and for customers.
However, with the advancement of solar photovoltaics
(PVs), battery storage, and MGs, resilient distribution sys-
tems can leverage their resourcefulness and flexibility to
withstand and rapidly recover from disturbances, thereby
enhancing the entire system’s resilience.

Yuan et al. [62] proposed a two-stage robust opti-
mization model to design resilient distribution networks
with the consideration of hardening the grid and allo-
cating DERs to minimize the system damage against
natural disasters for improved resilience. Manshadi and
Khodayar [63] proposed a bilevel optimization model to
transform the active distribution network with DERs into
multiple autonomous MGs to ensure the reliability of
energy supply against disruption and thus enhance the
system’s resilience. He et al. [64] presented a trilevel
robust optimization-based network hardening model for
integrated electricity and natural gas distribution systems
to improve power system resilience with minimum load
shedding against natural disasters. Tan et al. [65] formu-
lated a two-stage stochastic optimization model to holis-
tically harden the distribution system and schedule post-
disaster repairs, aiming to improve the efficiency of the
restoration process against natural disasters with enhanced
resilience.

Barnes et al. [66] proposed a two-stage stochastic opti-
mization model to strengthen the resilience of distribution
systems by leveraging networked MGs to ensure the energy
supply under storms. Nazemi et al. [67] proposed a linear
optimization model to determine the capacity and loca-
tion of the battery energy storage systems for hardening

distribution network in order to more reliably supply cus-
tomers energy with better resilience against earthquakes.
Huang et al. [68] proposed a resilience-oriented planning
method to determine the optimal configuration of distribu-
tion level multienergy systems against HILF events.

C. Resilient Communication Network and Data
Delivery Against Adversaries

In modern power systems, communication networks
allow the exchange of information, such as measurements
and control commands, between field devices and opera-
tors. Several industrial communication protocols and stan-
dards, such as DNP3, Modbus, IEEE C37.118, and IEC
61850, have been applied to power systems for better
observability and controllability. However, cyber networks
have uncertainties and vulnerabilities that can be exploited
and compromise the system [157], [158], [159]. They
have posed threats to power system operation. Thus,
ensuring the resilience of cyber networks and the delivery
of trustworthy information is even more critical in light
of increasing cyberattacks that could exploit vulnerabilities
and compromise power system operations.

Lin et al. [69] proposed a self-healing phasor mea-
surement unit (PMU) network that utilizes the software-
defined networking (SDN) infrastructure to mitigate the
impact of cyberattacks on PMU data. The proposed
solution isolates compromised components and recon-
nects recovered components for enhanced cyber and data
resilience. Al-Rubaye et al. [70] proposed an SDN platform
using industrial Internet of Things (IIoT) technology to
support power systems’ resilience. This platform dynam-
ically updates communication networks against adver-
saries to ensure reliable and flexible operations with
real-time system monitoring data. Jin et al. [71] pre-
sented an SDN-based communication network architecture
for MG operations with multiple functionalities, includ-
ing self-healing communication network management,
real-time and uncertainty-aware communication network
verification, and specification-based intrusion detection,
against cyberattacks for the whole systems’ security and
resilience. Sargolzaei et al. [72] proposed a cryptography-
free time-delay switch recovery communication protocol
enhancement that leverages adaptive channel redundancy
techniques and a state estimator to detect and recover
from time-delay switch attacks for power systems’ stability
and resilience. Mylrea and Gourisetti [73] explored the
application of blockchain technology and smart contracts
to increase the fidelity and security of communications
between customer end and system end for enhanced cyber
resilience against vulnerabilities. Liang et al. [74] proposed
a distributed blockchain-based data protection framework
that utilizes the consensus mechanism to enhance the self-
defensive capability of power systems against cyberattacks,
thus enhancing their inherent cyber resilience. Xu et al.
[75] formulated a mixed-integer optimization model to
determine the optimal routing policy for cyber–physical
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Fig. 6. Quantum network-based power grid architecture [78],
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power systems considering the information and energy
flow, as well as the interdependence between cyber and
physical components. The optimal routing policy ensured
the robustness and resilience of cyber–physical power sys-
tems through reliable remedial control actions. Tariq et al.
[76] proposed a graphics processing unit (GPU)-enabled
adaptive robust state estimation. This approach consists of
deep learning, long short-term memory, and a nonlinear
extended Kalman filter, taking advantage of advancements
in next-generation wireless communication and network-
ing technologies. With a two-level online parametric state
estimation, it can enhance the security of data transmission
against cyberattacks for load management. Jiang et al.
[77] developed a quantum direct communication net-
work for power grids to enhance the cyber resilience for
power system operations by providing more secure data
transmission against cyberattacks. Tang et al. [78] built
a quantum network-based power grid testbed (Fig. 6)
to explore the benefits of quantum communication in
power systems, with more flexible, secure, and resilient
communication and operations. Wang et al. [79] proposed
a blockchain-based vehicle-to-vehicle RES trading model.
This model features a novel block alliance consensus mech-
anism with security, decentralization, and infinite scalabil-
ity to improve the stability and reliability toward a resilient
power grid.

D. Threat Prediction and Impact Assessment

The bulk electric power grid is subject to vulnerabili-
ties from natural disasters, cyberattacks, and human-made
mistakes, which might lead to cascading outages and
large-scale blackout. Thus, identifying vulnerabilities and
assessing their impact on cyber–physical power systems
are of great importance and can provide useful insights
for enhancing security and resilience against extreme and
unexpected events.

Vu and Turitsyn [80] constructed a robust assessment
toolbox using quadratic Lyapunov functions approaches
to provide a real-time transient stability certificate and
assessment for power systems under different fault sce-
narios. Espinoza et al. [81] proposed a time-dependent
multiphase resilience assessment framework to evaluate
how can systems withstand major disruptions with limited

degradation and recover rapidly, considering the stochastic
and spatiotemporal properties of events. Kwasinski [82]
presented a framework for characterizing resilience using
an analogous measure of availability as a quantitative
metric to evaluate power system resilience from the cus-
tomers’ perspective, considering the human factors and
cyber and physical components. Bajpai et al. [83] pro-
posed an algorithm using a graph-theoretic approach and
a Choquet integral to quantify power system resilience
and maintain the energy supply to critical loads during
extreme contingencies. Ciapessoni et al. [84] presented
a probabilistic, risk-based security assessment that ranks
risks in both cyber and physical networks in order to help
operators improve power system resilience. Zhang et al.
[85] proposed a reliability assessment framework using
Bayesian attack graph models for wind farm EMSs against
coordinated cyberattacks, which operators can use to bet-
ter prepare defense and remedial strategies for enhanced
system resilience. Clark and Zonouz [86] proposed a
cyber–physical resilience metric that considered the cyber-
attacks from the cyber network and its impact on the
physical components through a competitive Markov deci-
sion process, aiding operators in better defending cyber
and physical incidents. Lopez et al. [87] proposed an
architecture for smart grids that leverages cloud computing
resources, along with collaborative decision algorithms
and graph theory, to predict load consumption and safe-
guard the power grid against communication losses and
intrusion attacks, thereby enhancing the safety, security,
and resilience of power systems. Dehghanian et al. [88]
introduced a weather-driven, probabilistic-based risk met-
ric that uses meteorological information to predict weather
hazards, analyze grid vulnerabilities, and quantify finan-
cial consequences for corrective operation for enhanced
resilience of electric power systems. Specifically, this metric
models weather and environmental events in a stochastic
process and considers their spatial–temporal correlation
on grid components’ reliability and functionality. Watson
and Etemadi [89] developed a series of models for hurri-
cane exposure, fragility curve-based component damage,
and restoration cost using the Monte Carlo simulation to
predict power systems’ resilience factors, which are the
power generation capacity lost and the restoration cost, for
electrical transmission grid and power generation system
damages. Venkataramanan et al. [90] proposed a com-
pound metric to evaluate the resilience of cyber–physical
transmission systems considering the topological proper-
ties and functionalities of cyber and physical networks to
assist operators with better situational awareness in order
to enhance power system resilience against cyber and
natural hazards. Overbye et al. [91] presented a number
of techniques that can be used to enhance electric grid
situational awareness, including the use of geographic data
views [160] for operators to make better decisions regard-
ing enhancing system resilience. Zhou and Zhang [92]
devised a high expressibility, low-depth quantum circuit
to realize quantum-based transient stability assessment
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for bulk power systems with a quantum natural gradient
algorithm. It enables efficient data-driven transient stabil-
ity prediction for resilient and secure decision-making in
real-world power systems. Kelly-Gorham et al. [93] built
a platform that captures the interdependence of various
systems with power systems and their impacts on power
system resilience. This platform uses stratified sampling
from historical data to provide a more accurate description
of the risks associated with low-probability events, which
is essential for evaluating resilience. The results also sug-
gest that the interaction models between different systems
could be more meaningful with more detailed physics
models or observations from historical data.

E. Scheduling and Operating Ahead Against
Contingencies for Security and Resilience

Avoiding the first few failures near the beginning of
a cascade or blackout is supreme for power systems.
The security-constrained optimal power flow (SCOPF) is
a common approach to ensure power systems’ secure
operation against planned N − 1 contingencies. It ensures
a secure operating state where demand is met without
reliability violations in either the base case or under a set
of postulated contingencies. The formulation is given as
follows [161]:

min
u0,uk

f0 (x0, u0) (1)

subject to: g0 (x0, u0) = 0 (2)

h0 (x0, u0) ≤ 0 (3)

gk (xk, uk) = 0 ∀k ∈ K (4)

hk (xk, uk) ≤ 0 ∀k ∈ K (5)

|uk − u0| ≤ ∆uk ∀k ∈ K (6)

where subscripts 0 and k denote the pre-contingency state
and post-contingency state, respectively; K is the set of
postulated contingencies; x0 and xk are the vectors of
state variables; u0 is the vector of preventive actions; uk

is the vector of corrective actions; ∆uk is the vector of
maximal allowed variation of corrective actions, reflecting
the ramping rate of controls; function f0 is the objective,
which usually is modeled as the operation cost; g is the
power flow equations; and h is the operational limit. The
corrective actions, uk, are constrained under each prede-
fined contingency, which are integrated through discrete
variables. Therefore, the SCOPF problem is generally a
mixed-integer nonlinear optimization problem considering
a set of postulated contingencies [162].

Even though the SCOPF has been proposed over decades
and applied in the field, there still remain a lot of devel-
opment and advancement opportunities to improve its
efficiency and effectiveness to ensure power systems’ secu-
rity and resilience. Xiang et al. [94] extended the tradi-
tional SCOPF to consider cyberattacks in power systems,
thereby enhancing system robustness and ensuring the

energy supply under malicious attacks. Madathil et al.
[95] developed an optimization model and an algorithm
for capacity planning and operations of MGs in a distri-
bution system to include N − 1 contingency security to
improve the resilience in remote communities. Karange-
los and Wehenkel [96] extended the SCOPF model with
probabilities of contingency events and potential failures in
post-contingency corrective controls to achieve probabilis-
tic reliability management. Avramidis et al. [97] included
post-contingency behaviors for voltage and frequency con-
trol with an SCOPF model using an approximation tech-
nique on generator response to improve the potential
degradation of solution quality. Weinhold and Mieth [98]
proposed an algorithm to identify the minimal set of
constraints for SCOPF problems with the exact space of
feasible nodal injections for a given network and contin-
gency scenarios, which greatly improves the efficiency of
solving this high-dimensional problem.

Apart from SCOPF, other approaches have also been
investigated for power systems to ensure their capability
to handle scheduled and unexpected contingencies. For
example, Yang et al. [99] proposed a centralized MG EMS
framework with a flexible time frame DER schedule to
improve power systems’ resilience and efficiency, leverag-
ing the forecasts of DER and load, as well as economic
factors. Shaker et al. [100] proposed a two-stage stochastic
model to plan reactive power using networked MGs against
extreme events, with reduced load shedding for better
resilience. Kamruzzaman et al. [101] partitioned power
systems into different regions based on geographic infor-
mation and proposed a multiagent framework using a deep
reinforcement learning algorithm to plan the deployment
of shunts, which enhances power system resilience against
extreme events and improves voltage stability. Zhao et al.
[102] proposed a two-stage distributionally robust opti-
mization problem to enhance the resilience of multi-
energy systems against cyberattacks in both the day-ahead
scheduling and real-time operations. Zakernezhad et al.
[103] presented a three-level optimization framework
for multienergy systems for improving the operational
resilience of multienergy systems. This framework offers
operators optimal scheduling and corrective control of dis-
tributed energy sources before and after external shocks.
Huang et al. [104] utilized a graph and information
theory-oriented metric, ecological robustness (RECO), to
formulate an ecological robustness-oriented optimal power
flow (RECO OPF) to improve power systems’ survivability
agnostic against the source of disturbances. Tobajas et al.
[105] proposed a resilience-oriented optimization problem
for MGs’ day-ahead scheduling with the consideration of
hybrid energy storage systems. It aims to maximize the
energy support during main grid blackouts and ensure
a continuous energy supply for critical loads, thereby
enhancing the system’s resilience. Lv et al. [106] proposed
resilience-oriented scheduling for integrated power distri-
bution networks and natural gas systems with multilevel
decentralized reserves, including electricity and natural
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gas systems, thermal storage devices, and building air
thermal storage, to mitigate the operational risks.

It is important to point out that all techniques within this
section lie at the intersection of infrastructural and oper-
ational resilience enhancements as classified in Table 1.
They rely on infrastructure design and risk assessment
and can be controlled and operated to enhance a system’s
inherent resilience in advance.

V. O P E R AT I O N A L R E S I L I E N C E
E N H A N C E M E N T
In addition to the inherent resilience residing in net-
works, researchers have studied various techniques and
algorithms to defend against threats, including emergency
power supply, network reconfiguration, failed compo-
nent replacement, self-healing mechanisms, and mitiga-
tion strategies. The following sections review preventative
measures against natural disasters, defense mechanisms
against cyberattacks, and remedial actions and restoration
strategies after contingencies have occurred.

A. Resilience-Oriented Preventative Operations
Against Natural Hazards

Natural disasters have caused the most disturbances
in power systems due to their abruptness and intensity,
resulting in tremendous societal and economic losses. To
maintain the system’s resilience, it is necessary to take
preemptive actions to counteract the adverse impact of
different extreme natural events just ahead time.

Wang et al. [107] leveraged the Markov process to
model the uncertain sequential transition of system states
under extreme weather and formulated a recursive value
function at each state to determine the optimal proac-
tive operation strategy for enhancing system resilience.
Gholami et al. [108] presented a two-stage stochastic pro-
gramming approach for the optimal scheduling of MG, con-
sidering uncertainties from renewable energy resources,
electrical vehicles (EVs), and market price, against nat-
ural disasters to improve the system resilience. Trakas
and Hatziargyriou [109] proposed a stochastic program-
ming approach that leveraged a model of dynamic line
ratings and the uncertainty of solar and wind, as well
as their impact on DER output during wildfire progres-
sion, to improve the resilience of a distribution system.
Trakas and Hatziargyriou [110] also formulated a trilevel
optimization problem for resilient constrained day-ahead
unit commitment. The goal was to minimize unit com-
mitment and operational cost while accounting for the
worst outcome from extreme weather. Wang et al. [111]
proposed a resilience-oriented hourly unit commitment
problem through a sequential and Monte Carlo-based
framework to seek a tradeoff among operation cost, the
homogeneity of flow distributions in power networks,
and the loading rates of local lines affected by extreme
weather. Ciapessoni et al. [112] proposed a security-
constrained redispatching approach to predict potential

critical scenarios, satisfy additional N − 1 security criteria,
and increase the system resilience against wet snowstorms.
Wang et al. [113] proposed a resilience index to capture
systems’ reliability and risk impact using the Monte Carlo
simulation. Based on that, they formulated a resilience-
constrained economic dispatch against extreme weather
events to improve power system resilience. Yan et al.
[114] proposed a two-stage robust optimization model
for the optimal coordination of power system schedule
with the prepositioning and routing of mobile dc de-
icing devices against ice storms for power transmission
system resilience enhancement. Zhao et al. [115] proposed
a resilient unit commitment problem using a two-stage
distributionally robust and robust optimization model.
Their aim was to mitigate the adverse impact of the
worst load forecasting and line failure scenario from hurri-
canes for day-ahead market. Pandey et al. [116] proposed
a resilience-driven pre-event distribution reconfiguration
approach with intentional islanding. They leveraged a
maximum likelihood estimation ensemble model with dis-
tribution synchrophasor data to identify the load at risk
and then reconfigure the topology between load and dis-
tribution system to minimize the impact of unexpected
natural events on critical loads. Gutierrez-Rojas et al.
[117] introduced a predictive weather-based control pol-
icy for battery energy storage systems to manage MGs
under interruptions for better resilience. It is a multiob-
jective optimization problem integrated with a decision-
tree-based learning algorithm in order to better predict
the load demand, solar production, and upstream inter-
ruptions. Zhang et al. [118] utilized the Poisson process
theory to estimate the time interval between successive
failures and then proposed a systematic preventive control
framework against successive failures to enhance security,
stability, and resilience. Kadir et al. [119] modeled the
proactive control problem against wildfire events as a
Markov decision process to minimize load outages and
solved the problem using a deep reinforcement learning-
based power generation coordination approach, which
provides decision support for grid operators.

B. Resilience-Oriented Defense Mechanism
Against Cyberattacks

Delicate cyberattacks, such as denial of service (DoS)
attacks and FDI, can directly compromise information
delivery and decision-making for power systems, leading
to reduced resilience level. Therefore, it is essential to
take timely and effective control actions to ensure power
systems remain resilient in the face of those attacks.

Liu et al. [120] proposed an attack-resilient coopera-
tive control strategy for distributed generators, incorpo-
rating properly designed observation networks to ensure
the functionality and resilience of the entire distribution
network against communication failure and cyberattacks
(e.g., DoS attack and deceptive attack). Farraj et al. [121]
proposed a parametric feedback linearization-based frame-
work for delay-resilient cyber–physical control of smart
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grid systems, enhancing their time-delay tolerance for
transient stability against DoS attack and communication
latency. Ashok et al. [122] proposed an end-to-end attack-
resilient cyber–physical security framework with defense-
in-depth architecture for wide-area monitoring, protection,
and control applications to achieve attack resilience at
both the infrastructure layer and the application layer for
power systems. Musleh et al. [123] proposed a multisen-
sor temporal prediction-based wide-area control scheme
to accurately address FDI attacks and control the smart
grid’s voltage profile for system’s stability and resilience.
Habib et al. [124] proposed an adaptive protection scheme
with an autonomous control algorithm for the superca-
pacitor’s ac/dc converter, leveraging its capacitive energy
storage to enhance system resilience against communi-
cation outages caused by communication link failures
and DoS attacks. Huang et al. [125] proposed an online
framework using dynamic watermarking techniques to
detect cyberattacks (e.g., replay attack, noise injection
attack, and destablization attack) on automatic generation
control (AGC) to ensure their validity and the systems’
resilience. Davarikia and Barati [126] proposed a trilevel
interdiction optimization model considering the actions
from defender, attacker, and operator to improve power
grid resilience with hardening strategies for vulnerable
components against hazards. Lai et al. [127] proposed
both deterministic and stochastic coupling strategies for
asymmetric cyber–physical power systems to improve its
robustness against both random and intentional cyberat-
tacks. Chen et al. [128] presented a distributed dynamic
filtering (state estimation) scheme taking advantage of two
Riccati-like difference equations and a recursive algorithm
to minimize the error against DoS attacks and gain per-
turbations to ensure the observability and controllability
of power systems. Lai et al. [129] proposed a robustness-
oriented economic dispatch model with a battery storage
sizing algorithm for MGs to improve energy supply against
attacks. Abbaspour et al. [130] proposed a resilient control
design for load frequency control system leveraging the
Luenberger observer, Kalman filter, and artificial neural
networks (ANNs) for online detection of FDI attacks and
compensate their adverse effects for system stability and
resilience. Lai et al. [131] proposed a trilevel optimiza-
tion model considering a coordinated attack scenario with
short-circuiting transmission line and cyber-induced dis-
abled protective relay to identify the optimal defending
resource allocation to hedge against coordinated attacks,
enhance the system’s security and energy supply, and save
the system from cascading failures. Wang and Govindarasu
[132] presented a multiagent-based attack-resilient system
integrity protection design to enhance the cyber resilience
with a support vector machine embedded layered decision
tree algorithm to detect multiclass anomalies and an adap-
tive load rejection strategy to mitigate the load shedding
against DoS attacks. Elimam et al. [133] presented two
deep learning-based models to detect PMU data manipu-
lation attacks and to recover the corrupted measurements

for power systems steady- and transient-state operations
with improved security and resilience.

C. Resilience-Oriented Remedial Actions and
Restoration Strategies

Once a contingency has caused the power system to
operate under stress, it is paramount to take remedial
actions to relieve the system stress and ensure maximum
energy supply for customers. While blackouts are rare,
it is still important to study and prepare the restoration
schemes that prioritize speed and effectiveness while tak-
ing economic factors into consideration.

Huang et al. [134] presented an integrated resilience
response framework with a two-stage robust mixed-integer
optimization model that linked the situation awareness
with resilience enhancement for effective and efficient
responses against natural disasters in preventive and
emergency states. Amraee and Saberi [135] proposed a
controlled splitting strategy with a mixed-integer opti-
mization model considering the slow coherency of syn-
chronous generators and system stability to determine
the splitting points of an interconnected power system to
maintain its security and resilience against contingencies.
Teymouri et al. [136] developed a controlled network
partitioning model through a mixed-integer linear pro-
gramming formulation to improve power grid resilience
considering frequency stability and minimizing load shed-
ding against catastrophic events. Hossain-McKenzie et al.
[137] proposed online remedial action schemes utiliz-
ing clustering and factorization mechanisms to find the
most effective control against cyberattacks and extreme
events that could effectively relieve system stress for better
resilience. Yan et al. [138] proposed a trilevel two-stage
robust model for an integrated energy system, leveraging
the energy hub architecture with power and gas network
constraints (regional model), and the energy hub architec-
ture for multiple districts (district model) to determine pre-
ventive and corrective responses against natural disasters
for enhancing the integrated system’s inherent resilience.
Hussain et al. [139] proposed a fast and efficient linear
sensitivity-based transmission switch algorithm, leveraging
line outage distribution factors to reduce the loss of load
under extreme events for boosting power system resilience.

Gao et al. [140] formulated a two-objective chance-
constrained optimization model considering the uncer-
tainties in renewable energy resources and load demand
in the distribution system to leverage MGs for assisting
critical load restoration with maximum energy supply and
minimum load voltage variations after extreme events.
Sedzro et al. [141] developed a mixed-integer optimiza-
tion model of the post-disaster MG formation to maximize
critical load pickup while satisfying the operational con-
straints for power system restoration considering fixed and
mobile distributed generator units and DERs. Qiu and Li
[142] presented a mixed-integer optimization model to
integrate the sectionalization and the generator start-up
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sequencing into a unified model for an effective and exe-
cutable restoration plan satisfying operational constraints.
Chen et al. [143] presented a distribution system restora-
tion decision support tool leveraging the techniques of
distribution automation and advanced metering infrastruc-
ture to maintain grid resilience with improved situational
awareness of system damage status and customer surviv-
ability against extreme weather events. Poudel and Dubey
[144] formulated a mixed-integer linear model for distri-
bution systems to obtain a robust restoration plan leverag-
ing DERs after natural disaster that maximizes the amount
of restored critical load and optimizes the restoration time
considering the potential failures during the restoration
process. Dehghanian et al. [145] proposed a resilience-
based corrective topology control optimization with direct
current optimal power flow to provide an agile restoration
strategy with both generator dispatch and transmission
line switch against the anticipated HILF events for improv-
ing the system’s resilience.

Li et al. [146] proposed an integrated restoration strat-
egy using linearized optimal power flow dispatch and
reinforcement learning-based optimal link restoration to
maximally supply energy after events. Bedoya et al. [147]
proposed a deep learning model with Monte Carlo tree
search to efficiently restore a distribution system for
enhanced resilience, considering asynchronous and par-
tial information scenarios. Zhao et al. [148] proposed a
fast robust load restoration strategy for bulk system with
high penetration of wind power. They leveraged deep
neural network and deep convolutional neural network
to obtain the optimal load pickup decision and ensure
the system security considering the uncertainties during
the process. Hosseini and Parvania [149] developed an
intelligent resilience controller using deep reinforcement
learning to achieve fast real-time operation decision after
outages in order to restore energy supply. Birchfield [150]
proposed a computationally efficient blackstart restoration
algorithm that leverages directed graph decomposition to
sectionalize a large-scale system into multiple islands and
correctly prioritizes restoring loads and cranking gener-
ators in each island, with the objective of minimizing
the total cost of load outages while maintaining system’s
stability. Li et al. [151] introduced a load restoration
strategy after extreme natural events based on an optimal
multienergy flow model to improve multienergy systems’
resilience, accounting for the integrated power, heat, and
gas networks. Edib et al. [152] proposed a concept of
cyber restoration for cyber–physical power systems con-
sidering their observability and information recovery in
communication networks after blackouts and formulated
a mixed-integer linear programming to determine an opti-
mal cyber restoration scheme to efficiently recover power
systems’ observability for physical networks’ operations.
Zhang et al. [153] proposed a Bayesian deep reinforce-
ment learning-based real-time control for multienergy
MGs. This approach captures uncertainties associated with
RES output to provide energy management and control

to improve the system’s resilience after extreme events.
Wang et al. [154] introduced a decentralized operating
paradigm to coordinate local multienergy MGs for system-
wise bulk power system load restoration with a topology-
aware multitask reinforcement learning. Fu et al. [155]
proposed a hybrid quantum–classical approach to coordi-
nate multiple energy resources for post-disaster restoration
in distribution systems. This approach decomposes the
original mixed-integer linear programming for coordinated
post-disaster restoration problems into subproblems, and
the mixed binary problem can be solved using a quantum
approach.

VI. D I S C U S S I O N O F R E S I L I E N C E
E N H A N C E M E N T T E C H N I Q U E S
In this section, we present a more in-depth discussion
of the reviewed articles, focusing on their modeling and
problem formulations, and their quantification of resilience
with various considerations. In addition, we explore the
gaps between these studies and their applications in the
field while also highlighting the importance of stakehold-
ers’ participation.

A. Modeling and Problem Formulation

The modeling and problem formulation of resilience
enhancement techniques can be categorized into opti-
mization modeling, statistical methods, machine learning
techniques, and advanced technologies for enhancing infras-
tructural and operational resilience. Based on the reviewed
articles and their main contributions to enhancing power
system resilience, we select three primary approaches
under each category and match them with specific appli-
cations in power systems, as illustrated in Fig. 7. It is
important to note that some approaches overlap as they
work collectively.

1) Optimization Modeling: Among all approaches, opti-
mization modeling has been used the most at different
stages to enhance power system resilience. As presented
in Sections IV and V, various optimization models have
been proposed with a particular objective to harden power
grids with more resilient network design and/or system
operation schemes in the face of HILF events, especially the
mixed-integer optimization model and the stochastic opti-
mization model. The mixed-integer optimization model
is capable to explicitly include power system constraints
and conditions with specific scenario or application that
needs discrete variables to represent ON/OFF status of
particular elements. In [52], [53], [58], [59], and [60],
the mixed-integer optimization model is used to model
options of hardening the network design. In [94], [95],
[96], [97], and [98], the SCOPF problem is formulated as a
mixed-integer optimization problem to explicitly consider
the postulated set of contingencies so that the optimized
operation scheme is both economic and secure in antici-
pation of those contingencies. In [75], the mixed-integer
optimization model is to link different domains, namely
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Fig. 7. Categorization of power system resilience enhancement approaches together with their applications.

energy and information flows, to optimize the network
routing policy against adversaries. In [134], [135], and
[136], the impact of different adversaries in power systems
is integrated to obtain the optimal remedial actions. In
[141], [142], and [144], the operation of MGs and DERs is
integrated through the mixed-integer optimization model
to determine the optimal restoration schemes. With the
integration of other energy infrastructures, mixed-integer
optimization has also been used for multienergy systems
to link constraints and objectives in different systems
for their resilience-oriented load restoration [151], [155].
In [152], the mixed-integer optimization model aggre-
gates each physical component’s observability through dis-
crete variables to determine the optimal cyber restoration
scheme for the entire system’s observability. The stochas-
tic optimization model is used to optimize the expected
aggregated benefits considering the stochastic nature of
adversarial events and DERs. In [52], [65], [66], and [68],
the stochastic optimization model is used to strengthen
distribution systems’ design, accounting for the impact
of extreme natural events. In [108], [109], and [100],
the optimal operational schemes are obtained considering
the uncertainties from DERs against unexpected events by
solving a stochastic optimization problem. In [127], the
stochastic nature of cyberattacks is considered for coupling
strategies in cyber–physical power systems. Besides the
problems mentioned above, two-stage or trilevel robust
optimization models have been used to incorporate more

properties of modern power systems, including the interde-
pendence and uncertainties raised from cyber and physical
infrastructures and operations. In [52], a two-stage mixed-
integer stochastic optimization is employed to strengthen
the inherent resilience of power networks by considering
various hardening strategies. Bilevel and trilevel optimiza-
tion models have also been used in interdependent power
and gas network optimization for transmission [54] and
distribution systems [64], respectively. When considering
DERs, Yuan et al. [62], Manshadi and Khodayar [63],
Tan et al. [65], and Barnes et al. [66] have formu-
lated different bilevel optimization models to design dis-
tribution networks with improved resilience. In addition,
Shaker et al. [100], Gholami et al. [108], and Trakas
and Hatziargyriou [110] have formulated bilevel and
trilevel optimization models to operate DERs and MGs to
ensure energy supply under contingencies. Considering the
impacts of natural disasters, Yan et al. [114] and Zhao et al.
[115] used two-stage optimization models to determine
preventative actions. In the case of defending cyberattacks,
Davarikia and Barati [126] and Lai et al. [131] utilized
trilevel optimization models to determine defense opera-
tions considering multiple roles in power system opera-
tions, including operators, attackers, and defenders. For
multienergy systems, Zhao et al. [102], Lv et al. [106],
and Yan et al. [138] presented multistage optimization
models to incorporate different resources and enhance the
resilience of power systems under various contingencies.
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It is worth noting that there is some overlap among
mixed-integer optimization, stochastic optimization, and
bilevel/trilevel optimization. Integer variables are used to
connect external constraints, scenarios, and objectives for
some stochastic and bilevel/trilevel optimization problems.
In this discussion, we only consider each article and its
methodology based on its primary contributions.

Undoubtedly, optimization models have great capability
to formulate design and operation problems from vari-
ous perspectives for enhancing power system resilience.
However, it is necessary to mention that different levels
of relaxations and approximations have been applied to
solve those complicated nonlinear optimization problems
under the context of power system constraints. Although
optimization models can be used almost at each phase of
power system resilience, it is hard to ensure real-time or
online agile response against threats solely based on state-
of-the-art optimization solvers, not to mention processing
the large amount of heterogeneous data across different
domains and the increasing number of variables and com-
plexities in optimization problems.

2) Stochastic-Based Approaches: Stochastic-based
approaches are becoming more prevalent in modern
power systems, given the increasing uncertainties
raised by the integration of RESs and communication
networks. Monte Carlo simulation has been widely used
to quantify power systems’ reliability by leveraging
random sampling to obtain numerical results [163].
For resilience enhancement, Monte Carlo simulation
can provide numerical analyses of adversarial events
to guide the network design and system operation by
considering the probabilistic characteristics of investigated
hazards [55], [89], [111], [113]. Different probability
and vulnerability models have been implemented based
on historical data and observations. Markov Process,
a stochastic model describing a sequence of possible
events, has been used to account for power systems’ state
transition during an unfolding natural or cyber event
and thus provide assessment of events’ impact, where
the transition probability is calculated with vulnerability
and/or frangibility models of investigated contingencies
or simulated data of investigated cases [86], [107], [119].
Bayesian attack graph has also been used to represent
the procedures of cyberattacks in power systems for
reliability assessment [85]. Poisson process theory has
been utilized to model the successive failure propagation
of power system components under extreme weather
[118]. Other probability-based frameworks leveraging
components’ fragility curve, failure rate, and vulnerability
with historical observations and data assess the risk and
impact of adversarial events on power systems [61], [84],
[88], [89], [96], [164].

Stochastic-based methods certainly provide more situa-
tional awareness regarding threats from extreme weather
events and cyberattacks, which enable operators and stake-
holders to better prepare the system with better resilience.

However, the gap between risk assessment or situational
awareness and the design and operation of modern power
systems lies in how to seamlessly integrate cross-domain
information associated with power systems, including data
of system status, cyber, weather, and customer. This could
be even more complicated than the optimization modeling.

3) Machine Learning: Machine learning techniques and
data analytic have been used in various domains leverag-
ing their high efficiency and accuracy in dealing with large
amount of data for different problems. In power systems,
these techniques have been widely used in different areas
[165]. In this article, we narrow down their applications
that particularly enhance power system resilience. ANNs
[130] and deep learning [76] have been used with Kalman
filter to perform online false data detection and estimation.
The decision tree algorithm has been used for predic-
tion of load and solar [117] and to detect and classify
cyber and physical anomalies in smart grid [132]. The
clustering and factorization mechanisms have been used
together to reduce the searching space for determining
online remedial actions against cyberattacks and extreme
events [137]. Deep learning algorithms have been used
at different phases to enhance resilience, including net-
work design [57], [59], preventative operations [101],
proactive operations [119], [133], and restoration [146],
[147], [148], [153], [154]. These problems leverage deep
learning algorithms to improve the efficiency of the solving
process with heterogeneous data and models.

Machine learning techniques provide additional
approaches to enhance power system resilience with
better efficiency through delicate modeling or mapping
between machine learning algorithms and modern
power systems. Their great capability to deal with large
amount of heterogeneous data is leveraged for online
decision-making, which prompts the efficiency of solving
complex system problems. However, the aleatory and
epistemic uncertainties that reside in data, models, and
machine learning algorithms could compromise the
accuracy or confidence of the output, which limits the
application of machine learning for critical infrastructures.
Therefore, it is of great interest to develop machine
learning algorithms leveraging power system properties
for improving resilience with guaranteed confidence and
interoperability.

4) Advanced Technologies: Merging technologies are
being explored and applied to improve the cyber resilience
of modern power systems. SDN has been used in commu-
nication networks to enhance the resilience of power sys-
tems by providing more reliable and trustworthy data for
monitoring and control [69], [70], [71]. Blockchain tech-
nology enhances the security of information transactions
between customers and system operators with efficient
secure decentralized paradigms. This protects data against
cyber threats [73], boosts power systems’ self-defensive
capability [74], and facilitates peer-to-peer communica-
tion among EVs for system’s stability and reliability [79].
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Quantum communication has demonstrated its ability to
enhance both cyber and physical resilience with more
secure and robust data exchange and fast computation
for system operations in adversarial scenarios [77], [78].
Furthermore, quantum computing can be applied to solve
power system problems more efficiently, including tran-
sient stability analyses [92] and the optimal decision-
making process [155].

The demand for secure and resilient modern power
systems drives the development of innovative technologies,
and these advanced technologies have demonstrated their
advantages and benefits in securing modern power sys-
tems. However, revolutionizing a wide-area complex sys-
tem with new technologies is a costly and time-consuming
process. Justifying the investment and benefits of new
technologies in the field as well as reducing costs through
commercialization are important considerations.

B. Quantifiable Resilience Metrics

Regardless of the approach used to enhance power
system resilience, it is essential to determine the objective
of that approach, with the aim of guiding network design
or system operation. As there is no standardized measure
of power system resilience capturing its spatial–temporal
characteristic, most existing works use functional objec-
tives, such as investment, operational cost, and expected
energy supply, to design and operate system with preferred
resilience.

However, power system resilience can be conceptually
quantified as a time-dependent metric of the difference
between ideal and real system performance from the
beginning of the adverse event until the end of system
restoration, referred to the resilience trapezoid as fol-
lows [45]:

R =

∫ T

t0

(Pi − Pr) dt (7)

where R is the system resilience, Pi is the ideal perfor-
mance level of the system, Pr is the real performance
level of the system, and [t0, T ] is period of power system
anticipating the event till resuming to normal. The system
performance is conventionally measured as how many
households can get electricity supply under contingencies
and how fast the restoration can be after the contingencies
[166]. In order to enhance power system resilience, it is
either making Pr as close as Pi or reducing the period of
event.

Pi can be a constant value to represent the ideal situ-
ation of power systems. However, mathematically formu-
lating Pr for the entire period can be cumbersome due
to the time-dependent function that is influenced by sys-
tem infrastructure, operators’ decision-making, and valid
information of systems and events. Instead of integrating
the comprehensive resilience measure in (7), most of
the existing measures focus on particular stage or phase

in the resilience trapezoid (Fig. 3) to enhance modern
power systems’ resilience by leveraging power systems’
functional, infrastructural, and/or operational properties.
Various metrics have been proposed from different per-
spectives, such as energy supply, economic benefits, and
structural properties. Here are some examples.

In [140], an energy-based operational resilience metric
is developed as follows:

R =

∫ tr+T0

tr

∑
c∈C

Wc · Pc (t) dt (8)

where C is the set of critical loads restored by MGs, Wc is
the weight of a critical load c, Pc(t) is the active power of
load c at time t, and [tr, tr +T0] is the period of restoration
process. This resilience metric represents the total energy
supplied to the critical loads weighted by their priority.
Thus, it can guide the restoration of distribution system
to achieve the maximum energy supply to critical loads for
the system’s resilience.

In [54], a deterministic resilience metric is proposed
considering the minimal cost of load curtailment after the
occurrence of the most severe event

R = min
z

max
p,g

∑
i,b,t

fi (pdi,b,t) (9)

where z is the set of uncertain events, p,g is the vector of
system operation variables, fi() is the load loss cost func-
tion, pdi,b,t is the load curtailment, and (i, b, t) is the index
of bus, load block, and expansion period, respectively. This
resilience metric considers the economic factors of load
curtailment under a series of adverse events. It is used as
an upper bound constraint for system planning to ensure
system’s resilience with minimum investment.

In [116], a topology-based resilience metric is formu-
lated to guide the reconfiguration of distribution network

R =
w1 · bcn

w2 · lg,n

lmax

× Pc

Pn
(10)

where w1 and w2 are system-specific weights deter-
mined through analytical hierarchical processes; bcn is the
betweenness centrality of the node being assessed for its
resilience; lg,n represents the geodesic path of between
a node and a generator, lmax is the maximum of all path
lengths in a given network; and Pc and Pn are the real
power demands of the critical and all loads, respectively, at
and downstream of the assessed node. This resilience met-
ric leverages the functional importance of critical loads and
topological importance of each node with respect to their
downstream nodes. Thus, it is used to guide the restoration
of critical loads considering the network topology.

In [56] and [60], an ecosystem-inspired fitness met-
ric, RECO [see (11)–(15)], is used to guide the design
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of physical power networks for resilience, improving the
ability of the grid to tolerate disturbances and maintain
functionality securely. Through an analogy between bio-
logical food webs and power systems, this metric consid-
ers the network topology and power flow magnitudes to
quantify the balance between functional redundancy and
efficiency in power systems. The unique balance of func-
tional redundancy and efficiency in food webs, known as
the ecological “window of vitality,” serves as the inspiration
due to its association with the resilience of long established
ecological food webs [167]

RECO = −
(

ASC
DC

)
ln
(

ASC
DC

)
(11)

[T] = f
(
Pij , Pgeni

, Ploadi
, Plossi

)

=



0, Pgeni
, 0, . . . . . . 0

0, . . . Pgeni
, 0, . . . 0

0, . . . . . . . . . . . . Plossj

0, . . . Pij , . . . Ploadi
, . . .

0, . . . . . . . . . . . . . . .

0, . . . . . . . . . . . . 0


(12)

TSTp =

N+3∑
i=1

N+3∑
j=1

Tij (13)

ASC = −TSTp
N+3∑
i=1

N+3∑
j=1

(
Tij

TSTp
log2

(
TijTSTp

TiTj

))
(14)

DC = −TSTp
N+3∑
i=1

N+3∑
j=1

(
Tij

TSTp
log2

(
Tij

TSTp

))
(15)

where [T] is a square matrix containing power flow mag-
nitudes transferred among generators and buses, TSTp is
the sum of all flows, ASC is a dimensional evaluation
of system uncertainty, and DC is the dimensional aggre-
gated impacts (uncertainty) from all events (surprisals).
Thus, RECO has the ability to account for the presence
of unknown events, or interruptions, that can happen in
the system and maintain system’s safety. Optimization over
RECO, which results in an ecologically similar performance
captured by a range of ASC/DC values known as the
ecological “window of vitality” [167], [168], can enhance
the system’s ability to tolerate disturbances and maintain
its functionality securely. This ecological range has been
found to be beneficial for the resilience of not only physical
power grids but also water distribution networks [169]
and more generic systems of systems [170], [171].

The examples above demonstrate various power sys-
tem resilience measures that consider different aspects
of power system properties, such as network topologies,
power flow distribution, energy supply, or load importance.
However, it is worth noting that there are also various
resilience measures focusing on the assessment or predic-
tion of risk with external information. Through risk assess-
ment and evaluation of countermeasures, operators can
better prepare hardening strategies, and preventative and

remedial actions against HILF events, thereby enhancing
power systems’ resilience. Umunnakwe et al. [46] and
Stanković et al. [47] have summarized those resilience-
related metrics in detail and systematically analyzed their
features and application scenarios within the context of the
resilience trapezoid.

Regardless of the inputs and methodologies used for
power system resilience quantification, these measures
have to be integrated with power system constraints,
thereby guiding the design and operation of modern
power systems as well as the development and appli-
cation of advanced technologies for inherently resilient
power grids. As Kirchhoff ’s law-dominated power systems
become increasingly dependent on weather and human
factors (e.g., system operators situational awareness and
customer-based demand response), it is paramount to
leverage features across different domains, including cyber,
weather, and societal systems, to study their interactions
and interdependencies that can impact the system perfor-
mance. Accounting for modern power system resilience
cannot be done otherwise.

C. Gaps Between Research and Realization

Research is conventionally ahead of field applications
with a new technology or a new perspective. It could
prompt actions such as the adoption of EVs, the construc-
tion of transmission lines, and the deployment of advanced
technologies. Their outcomes may challenge existing
norms and potentially necessitate substantial investments
to renovate the system. For a widespread critical infrastruc-
ture, whether or how stakeholders adopt unconventional
recommendations or methodologies depends on various
factors.

As discussed earlier, new technologies, such as
blockchain technologies and quantum computing, have the
potential to enhance power systems’ resilience and secu-
rity. Blockchain technologies can facilitate more secure and
efficient communication among different sectors within
power systems. The decentralized paradigm of blockchain
technology can contribute more redundancy and resilience
for power systems against system failures and cyberat-
tacks, in contrast to the centralized paradigm. Many exist-
ing applications and investigations of blockchain tech-
nology in power systems focus on realizing peer-to-
peer trading, securing energy management of EV and
DERs, and implementing demand response [172]. Moving
beyond these applications, Mylrea and Gourisetti [73],
Liang et al. [74], and Wang et al. [79] have demonstrated
the benefits of enhancing resilience in power systems
using blockchain technology, considering various adver-
saries scenarios. Quantum computing introduces a new
mechanism for modeling and solving entangled states
and intractable problems with improved efficiency and
scalability, which can enhance the resilience of power
systems through power system analytic, decision-making,
and device control. Several companies now offer quantum
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computing services with noisy-intermediate-scale quantum
computers [173], bringing quantum technology closer to
practical applications. Jiang et al. [77], Tang et al. [78],
Zhou and Zhang [92], and Fu et al. [155] have utilized
quantum computing services to devise their quantum cir-
cuits, testbeds, and algorithms, showcasing the effective-
ness of quantum computing to enhance power systems’
resilience with faster and more efficient computation and
analytic capabilities. However, it is important to note that
the existing applications and demonstration are limited in
small-scale virtual or laboratory environments due to the
cost and the complexity of modeling power systems under
the new mechanism. When deployed in a real system with
customers, operators, and potential cyber and physical
attacks, the complexity of the system, the volume of data,
and the noise in the system could discount their benefits.
Stakeholders may raise concerns about the effectiveness or
cost-effectiveness of implementing these new technologies,
as it would require significant financial investments from
both customers and utility owners. Mollah et al. [172],
Zhou et al. [173], Ajagekar and You [174], Ullah et al.
[175], Di Silvestre et al. [176], and Mohammadi and Saif
[177] have summarized the applications, development,
limitations, and directions of quantum computing and
blockchain technologies in power systems. It should be
recognized that further development and advancement of
quantum computing and blockchain technologies are still
needed for their everyday applications. We are optimistic
that these advanced technologies will soon be extensively
applied to power systems, leveraging their significant com-
puting and security capabilities to enhance the resilience of
modern power systems.

The modeling of power systems relies on existing bench-
mark models [178], [179] or synthetic models based on
geographic and demographic information [180], [181],
[182], [183] that capture the physics and topological
characteristics of real power grid. However, these models
do not include the realistic consideration of customer-
side resources. In theory, customers now have the ability
to take proactive actions to ensure and enhance power
systems’ resilience with their own EVs and DERs [62],
[63], [79], [108], [141], [144]. These resources and
customers’ responses are simplified as additional inputs
to existing models. However, there is a gap between this
hypothetical model and real situation during hazards or
disruptions. There is a need to investigate and validate
the penetration of EVs and DERs in households, the con-
trollability of individual assets during hazards, and the
customers’ wiliness and benefits to participate in power
system operation and regulation. The increasing penetra-
tion of RES has made modern power systems increasingly
reliant on weather information for predicting both RES
output, end users’ consumption, and network status. It
is essential to include weather, geographic, and demo-
graphic information into power system models to better
account for external influences on power systems oper-
ation. The impacts of temperature on power networks

can be captured through heat balance equation [184],
which can be integrated with power flow equations [185],
[186], [187] to analyze the power flow distribution under
extreme and unexpected environment. Ahmed et al. [188]
and Overbye et al. [189] presented methodologies for
including more weather information, such as ambient
temperature, wind speed, wind angle, and solar radiance.
Zheng et al. [190] presented an open-access data hub that
integrates external data of weather, human, health with
electricity load data with mobile device location, and satel-
lite imaging data for a comprehensive analysis. Last but not
least, cyber networks are the carrier of information and
data for operators to monitor and control power systems.
As introduced in [157], [158] and [159], a successful high-
impact cyberattack involves several steps, from planning
to execution, which requires knowledge from both cyber
and physical domains. Traditional cybersecurity studies on
power systems only consider execution, such as FDI and
false command injection, on physical networks. Neverthe-
less, there are some signatures in the cyber data that can
help operators identify the threat in an early stage and thus
ensure the system’s security and resilience. It is crucial to
create a granular model of the cyber network, considering
its functionality and topology, to fully comprehend cyber-
attack’s impact on power systems. By emulating the entire
multistage cyberattacks, we can obtain realistic cyber–
physical datasets for different studies. The functionality
of communication systems can be emulated with various
software [191], [192], [193]. However, their topological
characteristics are often simplified by equating them to
the connected physical network or using models of scale-
free, random, or small-world networks, which overlook
cyber networks’ distinct features. Sahu et al. [194] have
presented a hierarchical model of communication network
that captures all detailed interactions among different
stakeholders and participators in power grids considering
various communication and intelligent electronic devices.
A detailed and realistic cyber model allows the investiga-
tion of cybersecurity at different phases of cyber intrusion
[195], [196]. This level of granularity should be incorpo-
rated into future cyber–physical power systems’ modeling
and studies to enhance modern power systems’ inherent
resilience against cyber disturbances.

Existing operational and design standards are not easily
modified. For example, power system operation utilizes
OPF or SCOPF to ensure their security and resilience with
minimum operational cost. These concepts and models are
well established and implemented, guaranteeing the most
economic operations. An innovative RECO OPF is proposed
in [104] and exhibits its superiority over OPF and SCOPF
regarding the systems’ survivability under N−x contingen-
cies. Nonetheless, the operational cost of the more resilient
RECO OPF is higher than OPF and SCOPF. Other reviewed
resilience metrics and methodologies [60], [100], [101],
[111], [116], [140] also take noneconomic factors into
consideration. Although the analyses demonstrate eco-
nomic benefits in long term, there are still uncertainties
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regarding whether or when the investigated contingency
scenarios will happen. This raises a question for stakehold-
ers: whether they are willing to bear the increased cost
of designing and operating power systems for enhanced
resilience or choose to take the risk of operating the system
at its economic margin and implement actions only after
contingencies occur to restore the system back.

Balancing the tradeoffs among resilience, cost, and effi-
ciency is a critical task when considering various strate-
gies to enhance the resilience of modern power systems.
Moreover, the integration of RES and EVs underscores
the necessity of including and validating the environ-
mental benefits when researchers advocate their work
in the context of enhancing the resilience of modern
power systems. Deriving a series quantifiable metrics of
resilience regarding modern power systems’ infrastructure
and functionalities will enable the analysis to trade off
resilience enhancements, economic benefits, and environ-
mental benefits. Nevertheless, determining these trade-
offs among resilience, cost, and efficiency for different
resilience enhancement strategies in modern power sys-
tems is complex. Considering modern power systems’
cross-domain multilayered architecture, the design and
operation of modern power systems depend on various
factors. Consequently, one resilience enhancement strategy
may entail compounded benefits, require additional invest-
ment, or face constraints from other domains. Further-
more, as critical infrastructure, the development of modern
power systems is influenced by policymakers’ prioritization
of objectives across various issues. Overall, identifying the
right balance among resilience, cost, and efficiency of
different resilience enhancement strategies is decided by
the stakeholders, including grid operators, market partici-
pators, customers, and policymakers, and based on subject-
matter expertise.

There needs to be a transition period during which
utilities, operators, and customers should participate in
the field testing of new technologies, models, and stan-
dards under normal and adversarial conditions. It is also
essential to assess how stakeholders in different domains
react to new schemes, technologies, and environments
toward more resilient modern power systems. Holistically
modeling and analyzing modern power systems with cross-
domain information, along with evaluation of resilience,
cost, efficiency, and other benefits, can assist all stakehold-
ers in understanding how to prioritize different resilience
enhancement strategies.

VII. N E W O P P O R T U N I T I E S I N M O D E R N
P O W E R S Y S T E M R E S I L I E N C E
E N H A N C E M E N T S
Based on all reviewed articles, we believe that infras-
tructural resilience lays the foundation for the entire sys-
tem’s inherent resilience against all potential hazards, and
operational resilience determines how resilient the system
can be during and after hazards with available resources.
However, modern power systems consist of heterogeneous

networks and data, forming a complex system of systems.
Physical networks are the backbone structure of entire
systems for energy deliver, cyber networks are collecting
and delivering data, and human networks are making
decisions. Data from the weather, physical, cyber, and
human domains together determine the resilience of mod-
ern power systems. The modeling, data analytic, and
resilience metrics are interrelated for ensuring and enhanc-
ing the resilience of energy infrastructure and services
[197]. There are some inconsistencies and disconnects on
modeling modern power systems considering their hetero-
geneous network and data across different domains [198].
However, it is significant to characterize interdependencies
across different domains as well as explicitly incorporate
them for holistically enhancing modern power systems’
resilience [199].

As suggested in [93], it is essential to include more
detailed physical interaction models to capture the impact
of other domains on power systems’ resilience. An exam-
ple of this focused on the direct inclusion of weather
information in the power flow is presented in [189]. It
improves the accuracy of power flow studies consider-
ing the integration of RES through the direct inclusion
of weather data. The fusion of cyber and physical data
also benefits the detection and defense against cyber and
physical attacks for the security of modern power sys-
tems. Sahu et al. [200] utilized several machine learning
techniques to fuse the cross-domain cyber and physical
data to prevent cyberattacks with more accurate identi-
fication of cyberattacks. Huang et al. [201] proposed a
series of programmable logic controllers logic to detect
and defend cyberattacks using the IEC 61131-3 engine
with the cyber information and physical measurements in
industrial controllers. With the cross-domain cyber and
physical information, the proposed cyber–physical alert
and control logic can more accurately detect and deter-
mine the source of contingencies whether they are from
the cyber or physical domain. These examples demon-
strate the necessity to leverage modern power systems’
heterogeneous networks and data from different domains
to holistically enhance their inherent resilience. It is
essential to develop a granular model of modern power
systems that considers the interconnected cross-domain
networks and encapsulates heterogeneous information and
external factors. Such a model can facilitate comprehen-
sive studies on resilience enhancements against various
threats.

Toward resilient modern power systems, there is a need
to holistically enhance or optimize both infrastructural
resilience and operational resilience considering their cross-
domain multilayer data and infrastructures. Therefore, two
challenges must be overcome to achieve the goal: 1) derive
a benchmark to determine the level of resilience and guide
the design of modern power systems’ architecture consid-
ering the interdependence among heterogeneous networks
across different domains and 2) develop an intelligent
agent to inform and control the system for its optimal
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Fig. 8. Seven different social–ecological systems motif

families [202].

resilience considering heterogeneous data across different
domains.

The following sections present potential directions to
address the above challenges using higher order subgraph
analyses and SciML). As new perspectives on analyzing
modern power systems, we also discuss the requirements
necessary to implement them for future research and
applications.

A. Higher Order Subgraph Analyses to Determine
the Benchmark of Infrastructural Resilience

Topological analyses of power networks play an impor-
tant role in understanding their infrastructural resilience
and can provide guidance for operational resilience. Met-
rics, such as node degree, betweenness centrality, and
shortest path, have been integrated with power sys-
tems’ properties to assess node and edge importance for
resilience-oriented design and operation [204]. One of
the most important developments in this field has been
in the creation of high quality, geographically based syn-
thetic electric grids [181], [205], [206], with validation
of these grids presented in [182]. However, there is an
urgent need to understand the interdependence among
heterogeneous networks, including cyber, physical, and
human networks, for modern power systems. Node- or
edge-based studies cannot capture the underlying rela-
tionship, while the higher order subgraphs associated
with intranode or internode and edges may reveal more
information regarding the interdependence and interac-
tions among heterogeneous networks [207]. For example,
Bodin and Tengö [202] utilized the four-node motifs (as
shown in Fig. 8) where two nodes are from social sys-
tems (social actors) and two nodes are from ecological
systems (ecological resources) to understand the social–
ecological interdependencies for interconnected social and

ecological networks. Both social–ecological systems and
cyber–physical systems are multilayered networks. Intu-
itively, the patterns of interdependence between social and
ecological systems could also be employed to understand
the interdependence between cyber and physical networks
at their boundaries.

Higher order subgraph analyses are emerging tools for
understanding the properties of complex networks. Net-
work motifs are defined as patterns of interconnections or
subgraphs occurring in complex networks at numbers that
are significantly higher than those in randomized networks
[208]. They have been used to analyze the structural
properties of ecological food webs and neuron networks,
which have turned out, can be useful for complex net-
works. Benson et al. [209] used a network motifs-based
framework for network partitioning and revealed new
organizational patterns and modules in complex systems.
Stone et al. [210] demonstrated that identifying network
motifs embedded in a larger network could indicate the
presence of evolutionary design principles or an overly
influential role in system-wide dynamics. In power net-
works, network motifs have been used to assess power
grids’ reliability and risks [211], [212].

1) Higher Order Motifs With Ecological Robustness: As
mentioned earlier, resilience originated from ecosystems
and various metrics have been derived to quantify the
features of long-term resilient ecosystems. RECO [see
(11)–(15)] is one of metrics that has been related to
features in ecosystems that support their resilience and
has been used to translate the resilient properties of food
webs to power systems through redistributing power flows
[104] and redesigning power networks [56], [60]. An
extended model has been proposed to analyze power
systems’ resilience with reactive and apparent power flows
considering structural impacts from generators and shunt
capacitors [213], [214]. This metric has been applied to
other human networks, such as water distribution net-
works [169], supply chains [215], and more generic sys-
tems of systems [171], and shown great enhancements
on system’s resilience. Since both RECO (resilience prop-
erty) and network motifs (higher order subgraph analy-
ses) are originated from ecosystems, the motif analyses
of the RECO-oriented power networks may reveal new
suggestions on resilient power network design. Here is a
preliminary study.

Fig. 9 shows all connected undirected four-node motifs,
which are six types of induced subgraphs. Dey et al. [211]
demonstrated that the four-node motifs’ motif characteris-
tics, motif concentration (Ci), can be used as an indispens-
able tool for understanding local network structure that
contributes to power grid resilience. Ci is the ratio of the
number of occurrences of the type i motif (Ni) to the total
number of all n-node motifs in the network

Ci =
Ni∑
i Ni

(16)
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Fig. 9. All connected four-node motifs.

where
∑

i Ni is the total occurrence of all n-node motifs in
the network.

Fig. 10 shows four RECO-oriented ACTIVSg200 networks
[60], and Fig. 11 shows the analyses of RECO, Ni, Ci, and
survivability for each case. The survivability is evaluated
under N − x contingencies, where a different number
of power system components (branches, generators, and
buses) are removed from the system, and it is quantified as
the number of violations and unsolved contingencies.

With more branches added to the original network, the
system’s inherent ability to tolerate disturbances (corre-
sponding to the reduction on the violations and unsolved
contingencies) is improved and shows an increase in RECO.
Through a comparison of different RECO-oriented power
networks, M3 and M5 may be favored by ecosystems’
resilient traits. From Fig. 11, M1 and M2 dominate the
power networks with the most occurrences in the graph
and highest motif concentration. However, the trend of
Ci shows that the increments of M3 and M5 are more
noticeable. Since RECO favors redundancy over efficiency
for food webs [168], we can deduce that both M3 and
M5 highlight this feature. Thus, it could be beneficial to
intentionally increase M3 and M5 when we design power
networks for better inherent infrastructural resilience. It
is important to further validate this claim under dynamic
adversarial events and analyze motif patterns, which will
be a future work.

2) Higher Order Motifs in Cyber–Physical Power Grid: As
we mentioned earlier, higher order motifs have been used
to disentangle the interdependence between ecosystems
and social systems, which are essentially heterogeneous
networks regarding their topology and functionality. There
is great potential to apply higher order motifs-based anal-
yses into cross-domain multilayered power systems with a
granular graphic representation to identify the critical local
structure connecting cyber and physical networks that are
essential for systems’ inherent resilience and security.

Huang et al. [216] utilized the four-node all-connected
motifs to characterize the interdependence between cyber
and physical networks considering three cyberattack sce-
narios on an augmented cyber–physical WSCC 9-bus

system [217]. Unlike previous work, this augmented
cyber–physical WSCC 9-bus system considered a more real-
istic and detailed cyber topology with various components,
including protective relay, network switch, router, and
control center computers, as shown in Fig. 12. Protective
relays connect cyber and physical networks with capabil-
ities of control and monitoring the physical network and
transferring data and information over the cyber network.

Fig. 13 shows the preliminary study on the motif pat-
terns at the cyber–physical connection under different
attack scenarios. The investigated cyberattack scenarios
consider cascading failures from communication networks
to physical networks, which is connected through protec-
tive relays. Based on the topological importance of cyber
nodes, the adversary targets the most important cyber
node and removes it along with all connected edges. The
importance of cyber nodes is measured by their topological
properties, including node degree, closeness centrality, and
betweenness centrality. Once the cyberattack reaches pro-
tective relays, which controls and monitors physical net-
works, the connected physical component is removed from
the physical network. This action can result in a physical
disturbance affecting the operation of the power system.
With the simulation, there is a remark of “physical network
breakdown,” specified by the black dashed lines in Fig. 13,
showing the period from the initial physical disturbance
triggered by cyberattacks until all loads are not supplied
by the system or the system is blackout (whichever comes
first).

Under all attack scenarios, we can observe that the
physical network breakdown is triggered by the decrease of
M2–M4. M2 is I.C in Fig. 8, wherein two cyber nodes are
connected and each one controls a physical device. Since
protective relays bridge the cyber and physical network,
the reduction of above motifs can indicate the potential
risk of cascading failures and disturbances on power sys-
tems’ functionalities. Based on the results, we observe that
the four-node motifs, particularly M2–M4, can represent
the resilience and reliability of the cyber–physical power
grid against cyberattacks at cyber–physical connections.
A higher percentage of M2 and M3 in the system indi-
cates that the cyber–physical network possesses greater
resistance to prevent cyberattacks from disrupting physical
network and thus maintain the functionality of power
systems. Inspecting M2–M4 at the boundary of the cyber
and physical networks can provide valuable information
about potential risks within the system.

From the above preliminary study, it can be observed
that higher order subgraph analyses can provide new
insights into resilient network design and system risk
analyses, especially for small networks with nodes from
different domains. Further investigation and development
of high-order subgraph analyses on modern power sys-
tems could enhance situational awareness of cascading
failures across different networks by examining variations
of motifs. In addition, Binqadhi et al. [218] investigated
the resilience of cyber–physical power systems, leveraging
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Fig. 10. RECO-oriented ACTIVSg200 network structures, the case information is available in [203]. (a) Original network topology.

(b) RECO-oriented network topology 1 (added five branches). (c) RECO-oriented network topology 2 (added 15 branches). (d) RECO-oriented

network topology 3 (added 26 branches). (e) RECO-oriented network topology 4 (added 31 branches).

higher order motifs to account for the impact of cyber
networks on power delivery against various hazards. For
modern power systems, it is paramount to consider hetero-
geneous networks of cyber, physical, and social domains.
Even though the topologies of these networks are geo-
graphically overlapped, there are many distinctions within
local networks, where the higher order subgraph analyses
at the level of small network patterns will be more useful.
The interactions and interdependence among different
networks also involve with different patterns of subgraphs.
The risks and uncertainties associated with nodes may
impact the higher order subgraph patterns by taking out
suspected nodes from the network. Higher order subgraph
analyses can be a useful tool to dissect the underlying rela-
tionships for more stringent design with better resilience
against propagated adversarial events.

Through a granular graphical representation of multi-
layered power systems, higher order subgraph analyses can
disclose the key local structure within the network as well
as identify critical connections across different networks,
especially for the interconnected cyber and physical net-
works. The cyber network serves as the carrier of infor-
mation and data that are critical for the physical network
to reliably deliver energy. Existing standards and require-
ments for network design and system operation emphasize
reliability and resilience within each network or domain
but often overlook the compounded effects stemming from
interactions with other systems [156]. In addition, there is
an increasing integration of RES at both large-scale power
plants and residential-level DERs. This rising penetration
of RES has introduced more uncertainties into operat-
ing power systems, considering the stochastic nature of
weather information and human decision-making. Given
the reliance on communication networks for monitoring
and controlling RES, cybersecurity becomes crucial for the

security and safety of both RES and the entire power grid.
Higher order subgraph analyses can contribute valuable
insights to the network design of interconnected cyber–
physical systems, bridging the information technology (IT)
and operational technology (OT) to ensure and enhance
the resiliency and security of modern power systems. The
interconnected human/social networks with power grid
can also be analyzed through network motifs to dissect
their interdependence, especially considering the impact
of RES, for a resilient multilayered network design. New
benchmarks could be developed for designing resilient
modern power networks, considering their heterogeneous
architecture using network motifs.

B. SciML for the Optimal Operational Resilience

Machine learning and data analytic are important tools
for modern power systems considering the need to process
large amount of data across different domains. Various
machine learning algorithms have been applied to power
systems for secure and resilient operations. They can
provide suggestions or recommendations to operators to
ride through contingencies if similar patterns have been
included in historical or they are predictable. However,
increasing unexpected hazards, whose patterns are not
included or predictable, could compromise the trustwor-
thiness of machine learning algorithms. It is important to
consider distinct governing mechanisms in different sys-
tems across different domains and devices to make optimal
decisions, but this can lead to intractable problems. With
the introduction of more external influences, particularly
the highly stochastic human and weather factors, into
power system design and operation, numerous intractable
tasks need to be addressed in power system operations.
Unlike the optimization models, where all power system
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Fig. 11. Motif-based structural, RECO, and resilience analyses for

all variations of ACTIVSg200 cases.

constraints are explicitly listed, machine learning tech-
niques are limited for their applications in power sys-
tems, considering the need of high quality and quantity
of training data, their infeasible or inconsistent solutions
for practical implementation, and their low generalizability

and interpretability. In order to prompt the development
and application of artificial intelligence (AI) in critical
infrastructures with direct control and operation, it is of
great importance to validate and verify aleatory uncertain-
ties from heterogeneous data and epistemic uncertainties
from machine learning algorithms.

SciML is an emerging field that combines machine learn-
ing and scientific computation to provide interpretable
models with improved verification and validation in appli-
cations [219]. It becomes crucial for efficient, explainable,
and trustworthy decision-making and problem-solving
leveraging machine learning and scientific computation to
ensure system reliability, security, and resilience. Physics-
informed neural network (PINN) is one type of SciML,
which has encoded model equations, such as partial dif-
ferential equations and physics constraints, as components
of deep neural networks. These features allow PINNs
to address problems that are described by few data or
noisy experiment observations. PINNs can be viewed as
unsupervised learning when they are trained solely using
physical equations and boundary conditions for forward
problems. For inverse problems or dealing with noisy data,
PINNs are considered as supervised learning with labeled
datasets [220]. For power systems, the core paradigm
of PINNs, including physics-informed loss function, ini-
tialization, design of architecture, and hybrid physics–deep
learning, has been used for various applications, such as
state estimation, dynamic analysis, power flow calculation,
optimal power flow, anomaly detection and location, and
model and data synthesis. The improved accuracy, effi-
ciency, and generalizability have demonstrated the bene-
fits of PINNs in power system problems [221]. However,
existing applications focus on the physical networks, while
modern power systems are cyber–physical systems with

Fig. 12. Augmented cyber–physical representation for WSCC

system [217].
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Fig. 13. Motif concentration on the WSCC 9-bus cyber–physical

connections under different cyberattacks [216]. (a) Node

degree-based attack. (b) Closeness centrality-based attack.

(c) Betweenness centrality-based attack.

RES, associated with more uncertainties. It is essential
to consider heterogeneous architectures and data from

different domains to account for external influences on
power system problems. Meanwhile, the spatial–temporal
property of resilience should be considered during the
development of SciML for its application in power systems
problems, leveraging its scientific computing capabilities
to provide feasible and trustworthy solutions for resilience
enhancement.

Modern power systems are generally graphs with dif-
ferent attributes across different domains. The associated
data and features can be represented using the graph-
structured data as G = (V, E), where V is the set of
nodes and E is the set of edges. There are generally a
nodal feature matrix Xnode and an edge feature matrix
Xedge associating with V and E, respectively [222]. For
the spatial–temporal graph, the data can be represented
as G(t) = (V(t), E(t), X(t)) considering the variation of
topology and attributes along with time t [223]. As modern
power systems are increasingly dependent on weather and
end-user behaviors, which depend on the geographic and
demographic information, such information may play an
important role in influencing power system operations.
The geometric correlation of data across power systems,
weather, and human factors is necessary for inferring
modern power systems’ status. In addition, cyber networks
carry all information for operators and stakeholders. The
topological attributes and data of cyber networks are
essential for cyber resilience. Graph data of cyber networks
should consider cyber features, such as re-transmissions,
round trip time, number of packets, and frame length.
These factors can determine the security of cyber networks,
as well as the physical data carried by cyber network,
which can determine the status of power systems. The
information on external factors, such as weather condi-
tions and human behaviors, can also be transmitted to
improve the assessment of the operation of weather- and
human-dependent RES.

Graph neural networks (GNNs) are a popular machine
learning and data mining approach for graph data. GNNs
have demonstrated great capability in handling graph
data in different fields such as computer vision, fore-
casting, recommendation systems, and event detection,
leveraging topological attributes [224]. GNNs have also
been integrated with different power system problems,
including load forecasting, anomaly detection, and con-
tingency prediction, through encoding power system data
in graphs [225], [226], [227]. Considering the interaction
and interdependence across different domains, particularly
their heterogeneous networks and data, there is a great
interest in further developing GNNs to process graph data
from various domains in modern power systems. Simplicial
neural networks (SNNs) have recently emerged as a way
to deal with multidimensional graphs with higher order
interactions between vertices [228]. Chen et al. [229]
proposed a block simplicial complex neural networks (BSc-
Nets) to integrate knowledge on interactions among mul-
tiple higher order graph structures for link prediction.
Chen et al. [230] utilized persistent homology and SNNs to
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Fig. 14. Power system state transitions considering disturbances

and control actions.

construct higher order topological neural networks to effi-
ciently learn outages in distribution networks. SNNs could
potentially be applied to interpolate data and their interac-
tions across heterogeneous networks in modern power sys-
tems, leveraging the topological features (both geographic
and geometric information) and attributes across different
domains.

Fig. 14 categorizes the states of modern power sys-
tem into normal secure, normal insecure, emergency, and
restoration based on operational conditions, as well as
demonstrates the transition among these states to cap-
ture the temporal property of resilience under adversarial
events.

1) Normal Secure: All equipment is operating within
limits and no critical contingency will cause real-time
operational limit violations.

2) Normal Insecure: All equipment is operating within
real-time operating limits, but one or more contingen-
cies will cause operational limit violations.

3) Emergency: Some equipment is operating outside of
real-time operational limits.

4) Restoration: There has been a major outage.

Disturbances from natural disasters, device failures, cyber-
attacks, or human mis-operations can cause a modern
power system to transition from normal secure to other
states, depending on the severity of the disturbance and
the system’s level of its inherent resilience. Different con-
trol actions are taken to return the system back to nor-
mal secure. It is worth noting that some emergency state
situations have to shed loads for system-wide resilience
and security. Thus, the emergency control first brings the
system into restoration state with regional outage and
then moves to normal state for the entire system through
restorative control. This state transition can be explic-
itly expressed through physical models and constraints
of power systems, and disturbances from other domains
(e.g., extreme weather, cyber threats, and human factors)
could be estimated through machine learning techniques.

In addition, this state classification with the consideration
of external influences can assist human operators and
machine learning techniques more efficiently identify the
optimal solution for modern power systems’ resilience by
eliminating inappropriate actions and state transitions.

By leveraging PINNs’ capability to interpolate physi-
cal models with encoded equations, GNNs’ capability to
handle graph data, deep learning’s capability to process
heterogeneous data, and the physics-guided state transi-
tion, we propose a generalized SciML-based framework
for modern power systems, as shown in Fig. 15. The
proposed SciML-based framework aims to provide trust-
worthy analyses, recommendation, and control for modern
power systems considering their heterogeneous networks
and data across different domains.

From our perspective, in modern power systems, hetero-
geneous networks, including operator networks, communi-
cation networks, and physical networks, can be abstracted
from the entire system, along with their interconnections.
These networks can be represented with different graphs
and graph-structured data as multiattribute nodes and
edges. These interconnected graphs capture the system’s
status, incorporating physical measurements and cyber
features, geographic information along with associated
weather data, and demographic information for inferring
energy consumption and local flexibility with households’
DERs and EVs. With the physical models and constraints
of power systems, SciML has the potential to harness
these data for efficient and trustworthy decision-making
processes, thereby enhancing modern power systems’ oper-
ational resilience against unexpected contingencies. The
proposed generalized SciML framework will take in this
graph-structured data as input and handle the intergraph
and intragraph, heterogeneous data, and mathematical
models that describe the state of modern power systems,
guiding operations for optimal resilience. In particular,
the integration of RES and EVs into power grids has
increased the complexity of control problems, affecting
the system’s stability and security. Stochastic influences
from weather condition, human decision, and cybersecu-
rity need to be estimated for their compounded impacts
on system operations. The goal of this generalized SciML-
based framework is to holistically analyze modern power
systems, considering the heterogeneous networks and data
for theoretically explainable situational awareness of fore-
seeing disturbances. This framework aims to offer trust-
worthy recommendations for operators to defend against
contingencies and directly control the system or devices
to prevent or ride through cascading failures, utilizing all
available resources connected to modern power systems.

C. Implications and Implementations

As we emphasized earlier, constructing a granular model
of modern power systems that considers interconnected
cross-domain networks and encapsulates heterogeneous
information and external factors is crucial. Based on the
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Fig. 15. Generalized SciML-based framework to handle heterogeneous networks and data of modern power systems for verifiable and

trustworthy analyses, recommendation, and control with the enhanced entire system’s resilience.

above discussion, we believe that higher order subgraph
analyses and SciML have the potential to generate new
knowledge and advance techniques for enhancing the
inherent resilience of modern power systems, considering
their interconnected heterogeneous networks and data.
While both techniques exhibit great potential for improv-
ing the resilience of modern power systems, given their
cross-domain multilayer architectures, there remains a
need for additional research and development to facilitate
their integration into real power systems.

1) Implications: Higher order subgraph analyses enable
a comprehensive view and analyses of multilayered het-
erogeneous networks in power systems. The preliminary
studies in this article show that specific motif patterns
are essential local structures for the security and inherent
resilience of modern power systems regarding their phys-
ical networks as well as interconnections between cyber
and physical networks. As modern power systems closely
interconnect with other critical infrastructures, such as
transportation networks, gas networks, and thermal net-
works, higher order subgraph analyses can also be applied
to discover the key connections among those networks
for overall resilience enhancement. Higher order subgraph
analyses offer a pathway to contribute new knowledge
and set standards for the resilient system design in both
single- and cross-domain networks, enhancing the inherent
resilience and security of modern power systems and other
interconnected infrastructures.

SciML will be an indispensable tool for future power sys-
tems and other critical infrastructures to provide trustwor-
thy solutions for various complicated and intractable tasks.
As shown in Fig. 15, the proposed generalized SciML-
based framework has the capability of processing large

amounts of heterogeneous data across different domains
and networks and to provide explainable and trustworthy
decision-making for system operations with guaranteed
resilience, leveraging features from PINNs, GNNs, rein-
forcement learning, and deep learning. Integrating SciML
with industrial control and monitoring devices and EMSs
can enable agile and trustworthy operations in power
systems against unexpected events raised from differ-
ent domains and thus enhance the system’s operational
resilience. It is important to note here that the proposed
framework is a general direction for developing SciML
algorithms for their applications in modern power systems.
This generalized SciML-based framework aims to bridge
recent advancements of SciML and broader AI with their
applications to modern power systems considering their
cross-domain multilayered architectures. With specified
tasks, constraints, features, and data, the developed SciML-
based applications should be compatible with any power
grid in different regions for various situations.

With the electrification of other critical infrastructures,
such as transportation systems, water systems, and manu-
facturing systems, it is essential to consider the interdepen-
dence and interactions of interconnected heterogeneous
networks in their design and operation. Further investiga-
tion and development of higher order subgraph analyses
and SciML can advance their applications to other critical
infrastructures, enhancing their resilience and security.

2) Implementations: First, synthetic cyber–physical
power system models are essential for studying modern
power systems, considering their cross-domain multilayer
architectures. These models can enable comprehensive
analyses of how disturbances from different domains,
such as cyber, weather, and human factors, can impact
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system performance. This is necessary for the investigation
and development of higher order subgraph analyses and
SciML on modern power systems. As mentioned earlier,
synthetic power grids of physical networks [180], [181],
[182], [183] have been created based on geographic and
demographic information, providing significant values
for power system studies. However, these models lack a
corresponding cyber model that captures the interactions
and data transactions among utilities, operators, and
customers. The core structure of cyber network is
characterized in [194], which can be utilized to create
synthetic cyber models. By mapping cyber and physical
networks, it becomes possible to establish connections
between power system simulation and communication
emulation through communication protocols, which can
provide a more comprehensive power system model.
This approach offers a comprehensive view of modern
power systems and allows researchers to replicate various
hazard scenarios with more detailed data across different
domains.

Second, real or realistic data of modern power systems
is crucial for the development and application of SciML.
The increasing integration of EVs and RES on the customer
side has highlighted the importance in human factors
to the system’s operation, which are highly stochastic.
Human factors and customer-side decisions are influenced
by various factors, including weather and economic con-
siderations (e.g., electricity prices and incentive mecha-
nisms). It is essential to recognize that the data for modern
power systems should encompass measurements of phys-
ical networks, such as energy consumption, power flows,
voltage, and currents, as well as external influences, such
as weather information, cybersecurity data, and economic
information. Furthermore, these data should be linked
with the power system model, both topologically or geo-
graphically, to better capture their underlying correlations.
A systematic dataset can facilitate the development and
validation of SciML-based data-driven approaches.

Last but not least, computing power is needed for
both higher order subgraph analyses and SciML for their
applications in large-scale power systems. The number
of motifs increases exponentially with the increase of
nodes in the system, which can take a long time to
finish the subgraph analyses for cross-domain multilayer
power systems. In particular, the real cyber network has
more components than physical networks to facilitate a
comprehensive analysis, and the social network involving
DERs and EVs requires different levels of abstraction to
effectively aggregate and estimate their impacts on power
grids. As for SciML, there are millions of variables and
data in the system. Training a model with such a large
dataset also takes a significant amount of time. Leveraging
GPU or cloud computing to perform these tasks is neces-
sary. It is also possible to utilize quantum computing to
address the intractable problems associated with SciML,
given the promise of its large-scale commercial utiliza-
tion. In addition, the transmission of a large amount of

data over a wide area also warrants the development of
communication networks. However, the investment and
allocation of computing resources to support various anal-
yses and applications that enhance the resilience and
security of critical infrastructures depends on stakeholders’
decisions.

Overall, the adoption of higher order subgraph analyses
and SciML in modern power systems should consider the
following three key aspects.

1) It is necessary to create or obtain comprehensive real-
istic cyber–physical power system models that respect
the heterogeneity in cyber and physical networks
regarding their topology as well as their intercon-
nected and interdependent functionalities.

2) It is essential to obtain real or realistic power sys-
tem data across different domains, including physical
measurement, cyber features, weather data, and geo-
graphic and demographic information.

3) More computational capability is needed for the
implementation of higher order subgraph analyses
and SciML in large-scale power systems considering
their networks’ complexity and large amounts of vari-
ables in different domains.

VIII. C O N C L U S I O N
Modern power systems are cross-domain multilayer com-
plex systems of systems with the integration of cyber and
physical networks, and an increasing penetration of RES at
both transmission and distribution levels. As the frequency
of unexpected disturbances increases, resilience becomes
an essential and desirable property for modern power
systems to maintain their functionality under any circum-
stance. In this article, we have provided a comprehensive
review and discussion of power system resilience and
its enhancement techniques from different perspectives.
Considering the complexity of modern power systems,
existing power system resilience enhancement techniques
have focused on certain domains: cyber or physical; spe-
cific levels: generation, transmission, or distribution; or
particular stages: construction or operation. However, it
is important to recognize that there are mutual influ-
ences among different resilience enhancement techniques.
Enhancing cyber resilience ensures data integrity for mon-
itoring and control power systems, thereby improving
operational resilience. Enhancing infrastructural resilience
provides additional flexibility and resources to enhance
operational resilience. Enhancing operational resilience
necessitates strengthening and investing in both cyber and
physical infrastructures. These techniques from different
categories could prompt the development of each other
for the entire system’s resilience. The interdependence and
interactions across different networks play a critical role
to determine and enhance the resilience of modern power
systems against unexpected events.

As a cross-domain multilayer complex system of
systems, it is paramount to holistically design and operate
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modern power systems considering heterogeneous net-
works and data for optimal resilience. This requires an
understanding of the interdependence among different
networks structurally and functionally, as well as the ability
to deal with mixed data from different domains in modern
power systems. As a critical infrastructure for modern soci-
ety, it is necessary to provide explainable, interpretable,
and verifiable models and tools for trustworthy decisions
on constructions and operations. Leveraging the rapid
development and application of AI, we propose two direc-
tions for future studies of resilient modern power sys-
tems: higher order subgraph analyses and SciML. Higher

order subgraph analyses can disclose more underlying
relationships of network resilience for intradomain and
interdomain network design. SciML can be developed to
deal with heterogeneous data and network structures for
agile system operations with ensured resilience against
unexpected hazards raised from different domains. With
a comprehensive cross-domain multilayer modern power
system model and its data from different domains, the new
knowledge and techniques from higher order subgraph
analyses and SciML can contribute to new standards and
requirements for resilient modern power system design,
operation, and management.
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